AMD Core Math Library (ACML)

Version 2.6.0

Copyright (© 2003,2004,2005 Advanced Micro Devices, Inc., Numerical Algorithms Group
Ltd.

AMD, the AMD Arrow logo, AMD Opteron, AMD Athlon and combinations thereof are
trademarks of Advanced Micro Devices, Inc.

Short Contents

1 Introduction.........ceeeeeeennnneeeeeeeennnnns 1
2 General Information « ..o oo v ittt 2
3 BLAS: Basic Linear Algebra Subprograms 12
4 LAPACK: Package of Linear Algebra Subroutines 13
5 Fast Fourier Transforms (FFTs) .. .oovvvenn... 17
6 ACML_MV: Fast Math and Fast Vector Math Library 58
7 References .o oo v vttt iiiiieennnns 102
Subject Index + v v v oo v v i e ettt ittt i e 103

Routine INdex v v v v v v v vt ittt ettt e eeoeeeeoeesoooees 104

Table of Contents

1 Introduction......................., 1
2 General Information 2
2.1 Determining the best ACML version for your system....... 2
2.2 Accessing the Library (Linux)............................ 4
2.2.1 Accessing the Library under Linux using GNU
GTT/ECC oo 4
2.2.2 Accessing the Library under Linux using PGI
compilers pgf77/pgfI0/pgec. ... 5
2.2.3 Accessing the Library under Linux using PathScale
compilers pathf90/pathcc.......................... 5
2.2.4 Accessing the Library under Linux using compilers
other than GNU, PGI or PathScale 6
2.3 Accessing the Library (Microsoft Windows) 6
2.3.1 Accessing the Library under 32-bit Windows using
GNU g77/8CC. o 6
2.3.2 Accessing the Library under 32-bit Windows using
PGI compilers pgf77/pgf90/pgec . ..ovvviiiil. 7
2.3.3 Accessing the Library under 32-bit Windows using
Microsoft C or Visual Fortran...................... 7
2.3.4 Accessing the Library under 64-bit Windows. 8
2.4 ACML FORTRAN and C interfaces 9
2.5 Library Version and Build Information................... 10
2.6 Library Documentation.................. 11
2.7 Example programs calling ACML........................ 11

3 BLAS: Basic Linear Algebra Subprograms.. 12

4 LAPACK: Package of Linear Algebra

Subroutinescoviiiiiiienn.. 13
4.1 Introduction to LAPACK 13
4.2 Reference sources for LAPACK 13
4.3 LAPACK block sizes and the ILAENV and ILAENVSET
TOULINES . . oo 13
5 Fast Fourier Transforms (FFTs) 17
5.1 Introduction to FETSs...... 17
5.1.1 Data Types and Storage 17
5.1.2 Efficiencyo 18
5.2 FFTs on Complex Sequences.c.oooveeiinnao.. 19

5.2.1 FFT of asingle sequence....................... 19

ii

ZFFT1D Routine Documentation................ 19

CFFT1D Routine Documentation 21
ZFFT1DX Routine Documentation............... 22
CFFT1DX Routine Documentation............... 24

5.2.2 FFT of multiple complex sequences 26
ZFFT1M Routine Documentation 26
CFFT1M Routine Documentation 28
ZFFT1MX Routine Documentation............... 29
CFFT1MX Routine Documentation............... 31

5.2.3 2D FFT of two-dimensional arrays of data....... 33
ZFFT2D Routine Documentation 33
CFFT2D Routine Documentation 35
ZFFT2DX Routine Documentation............... 36
CFFT2DX Routine Documentation............... 39

5.2.4 3D FFT of three-dimensional arrays of data 42
ZFFT3D Routine Documentation 42
CFFT3D Routine Documentation................ 44
ZFFT3DX Routine Documentation............... 45
CFFT3DX Routine Documentation............... 47

5.3 FFTs on real and Hermitian data sequences.............. 49
5.3.1 FFT of single sequences of real data............. 49
DZFFT Routine Documentation 49

SCFFT Routine Documentation 51

5.3.2 FFT of multiple sequences of real data 52
DZFFTM Routine Documentation................ 52
SCFFTM Routine Documentation 53

5.3.3 FFT of single Hermitian sequences.............. 54
ZDFFT Routine Documentation 54

CSFFT Routine Documentation 55

5.3.4 FFT of multiple Hermitian sequences 56
ZDFFTM Routine Documentation 56
CSFFTM Routine Documentation................ 57

6 ACML_MYV: Fast Math and Fast Vector Math

Librarycceeeen.... B8

6.1 Introduction to ACML_MV 58

6.1.1 Terminology............ ... i 58

6.1.2 Weak Aliases. ... 58

6.1.3 Defined Types........coooiii ... 59

6.2 Fast Basic Math Functions.............................. 60

fastcos: fast double precision Cosine 60

fastsin: fast double precision Sine 61

fastsincos: fast double precision Sine and Cosine........ 62
fastlog: fast double precision natural logarithm function

.. 63

iii

fastlog10: fast double precision base-10 logarithm function

.. 65
fastpow: fast double precision power function 66
fastpowf: fast single precision power function........... 68
fastexp: fast double precision exponential function...... 70
fastexpf: fast single precision exponential function 71

6.3 Fast Vector Math Functions............................. 72
vrd2_cos: Two-valued double precision Cosine.......... 72
vrd4_cos: Four-valued double precision Cosine.......... 73
vrda_cos: Array double precision Cosine 74
vrd2_sin: T'wo-valued double precision Sine 75
vrd4_sin: Four-valued double precision Sine 76
vrda_sin: Array double precision Sine.................. 7
vrd2_sincos: Two-valued double precision Sine and Cosine

.. 78
vrda_sincos: Array double precision Sine and Cosine.... 79
vrd2_log: Two-valued double precision natural logarithm

.. 81
vrd4_log: Four-valued double precision natural logarithm

.. 82
vrda_log: Array double precision natural logarithm 83
vrs4_logf: Two-valued single precision natural logarithm

.. 85
vrs8_logf: Eight-valued single precision natural logarithm

.. 86
vrsa_logf: Array single precision natural logarithm. 87
vrd2_logl0: Two-valued double precision base-10 logarithm

.. 89
vrd4_logl0: Four-valued double precision base-10 logarithm

.. 90

vrda_log10: Array double precision base-10 logarithm ... 92
vrd2_exp: Two-valued double precision exponential function
.. 94
vrd4_exp: Four-valued double precision exponential
function. 95
vrda_exp: Array double precision exponential function .. 96
vrs4_expf: Four-valued single precision exponential function
.. 97
vrs8_expf: Eight-valued single precision exponential
function. ... 98
vrsa_expf: Array single precision exponential function. .. 99
vrs4_powf: 4-value vector single precision power function
... 100

v

Routine Index

Chapter 1: Introduction 1

1 Introduction

The AMD Core Math Library (ACML) is a set of numerical routines tuned specifically
for AMD64 platform processors (including Opteron™ and Athlon™64). The routines,
which are available via both FORTRAN 77 and C interfaces, include:

e BLAS - Basic Linear Algebra Subprograms (including Sparse Level 1 BLAS);
e LAPACK - A comprehensive package of higher level linear algebra routines;

e FFT - a set of Fast Fourier Transform routines for real and complex data.

The BLAS and LAPACK routines provide a portable and standard set of interfaces
for common numerical linear algebra operations that allow code containing calls to these
routines to be readily ported across platforms. Full documentation for the BLAS and
LAPACK are available online. This manual will, therefore, be restricted to providing brief
descriptions of the BLAS and LAPACK and providing links to their documentation and
other materials (see Chapter 3 [The BLAS], page 12 and see Chapter 4 [LAPACK], page 13).

The FFT is an implementation of the Discrete Fourier Transform (DFT) that makes use
of symmetries in the definition to reduce the number of operations required from O(n*n) to
O(n*log n) when the sequence length, n, is the product of small prime factors; in particular,
when n is a power of 2. Despite the popularity and widespread use of FFT algorithms, the
definition of the DFT is not sufficiently precise to prescribe either the forward and backward
directions (these are sometimes interchanged), or the scaling factor associated with the
forward and backward transforms (the combined forward and backward transforms may
only reproduce the original sequence by following a prescribed scaling).

Currently, there is no agreed standard API for FFT routines. Hardware vendors usually
provide a set of high performance FFTs optimized for their systems: no two vendors employ
the same interfaces for their FFT routines. The ACML provides a set of FFT routines, op-
timized for AMDG64 processors, using an ACML-specific set of interfaces. The functionality,
interfaces and use of the ACML FFT routines are described below (see Chapter 5 [Fast
Fourier Transforms|, page 17).

Chapter 2 [General Information], page 2 provides details on:

how to link a user program to the ACML;
FORTRAN and C interfaces to ACML routines;

how to obtain the ACML version and build information;

how to access the ACML documentation.

A supplementary library of fast math and fast vector math functions (ACML_MV) is also
provided with some 64-bit versions of ACML. Some of the functions included in ACML_MV
are not callable from high-level languages, but must be called via assembly language; the
documentation of ACML_MV (see Chapter 6 [Fast Vector Math Library|, page 58) gives
details for each individual routine.

Chapter 2: General Information 2

2 General Information

2.1 Determining the best ACML version for your system

ACML comes in versions for 64-bit and 32-bit processors, running both Linux and Mi-
crosoft Windows®operating systems. To use the following tables, you will need to know
answers to these questions:

e Are you running a 64-bit operating system (on AMD64 hardware such as Opteron or
Athlon64)? Or are you running a 32-bit operating system?

e Is the operating system Linux or Microsoft Windows?

e Do you have the GNU compilers (g77/gcc) or compatible compilers (compilers that are
interoperable with the GNU compilers) installed?

e Do you have the PGI compilers (pgf77/pgf90/pgcc) installed?
e Do you have the PathScale compilers (pathf90/pathcc) installed?

e On a 32-bit Windows machine, do you have Microsoft C, or Compaq Visual Fortran,
or compatible compilers installed?

e Do you have a single processor system or a multiprocessor (SMP) system? The single
processor version of ACML can be run on an SMP machine and vice versa, but (if
you have the right compilers) it is more efficient to run the version appropriate to the
machine.

e If you're on a 32-bit machine, does it support Streaming SIMD Extension instructions

(SSE or SSE2)?

The ACML installation includes a binary utility that can help you find an answer to the
last question. The utility lies in directory util, and is named cpuid.exe. It interrogates the
processor to determine whether SSE and SSE2 instructions exist.

util/cpuid.exe

Under a Linux operating system, another way of finding out the answer to the last
question is to look at the special file /proc/cpuinfo, and see what appears under the “flags”
label. Try this command:

cat /proc/cpuinfo | grep flags

If the list of flags includes the flag “sse” then your machine supports SSE instructions.
If it also includes “sse2” then your machine supports SSE2 instructions. If your machine
supports these instructions, it is better to use a version of ACML which was built to take
advantage of them, for reasons of good performance.

The method of examining /proc/cpuinfo can also be used under Microsoft Windows if
you have the Cygwin UNIX-like tools installed (see http://www.cygwin.com/) and run a
bash shell. Note that AMD64 machines always support both SSE and SSE2 instructions,
under both Linux and Windows. Older (32-bit) AMD chips may support SSE but not
SSE2, or neither SSE nor SSE2 instructions. Other manufacturers’ hardware may or may
not support SSE or SSE2.

If you cannot determine whether or not your machine handles SSE or SSE2 instructions,
you may prefer to assume that it does not. If you link to a version of ACML that was built

Chapter 2: General Information

to use SSE or SSE2 instructions, and your machine does not in fact support them, it is
likely that your program will halt due to encountering an “illegal instruction” - you may or
may not be notified of this by the operating system.

Once you have answered the questions above, use these tables to decide which version
of ACML to link against.

Linux 64-bit

~

2

2

Number of processors Compilers
Single processor GNU g77/gcc or compatible

PGI pgf77/pgf90/pgce
PathScale pathf90/pathcc

~
ACML install directory
acml2.6.0/gnu64
acml2.6.0/pgi64
acml2.6.0/pathscale64

Multi processor PGI pgf77/pgf90/pgce acml2.6.0/pgi64_mp

N J
Linux 32-bit

(" N
Number of Compilers SSE supported ACML install directory
processors

Single GNU g77/gcc or compatible ~ SSE and SSE2 acml2.6.0/gnu32

”

SSE but no SSE2
? No SSE or SSE2

” PGI pgf77/pgf90/pgce SSE and SSE2 acml2.6.0/pgi32
7 7 SSE but no SSE2 acml2.6.0/pgi32_
nosse2
7 7 No SSE or SSE2 acml2.6.0/pgi32_
nosse
Multiple PGI pgf77/pgf90/pgce SSE and SSE2 acml2.6.0/pgi32_mp
N J

acml2.6.0/gnu32_

nosse2
acml2.6.0/gnu32_

nosse

Microsoft Windows 64-bit

Number of processors Compilers
Single processor PGI pgf77/pgfI0/pgce

ACML install directory
acml2.6.0/win64

Microsoft Windows 32-bit

Chapter 2: General Information 4

()
Number of Compilers SSE supported ACML install directory
Processors
Single GNU g77/gcc SSE and SSE2 acml2.6.0/gnu32
processor
7 7 SSE but no SSE2 acml2.6.0/gnu32_
nosse?2
7 7 No SSE or SSE2 acml2.6.0/gnu32_
nosse
7 PGI pgf77/pgf90/pgce SSE and SSE2 acml2.6.0/pgi32
7 7 SSE but no SSE2 acml2.6.0/pgi32_
nosse2
7 7 No SSE or SSE2 acml2.6.0/pgi32_
nosse
K CVF /Microsoft C SSE and SSE2 acml2.6.0/win32
Multi PGI pgf77/pgf90/pgce SSE and SSE2 acml2.6.0/pgi32_mp
processor
- J

2.2 Accessing the Library (Linux)

2.2.1 Accessing the Library under Linux using GNU g77/gcc

If the Linux 64-bit g77 version of ACML was installed in the default directory,
Jopt/acml2.6.0/gnu64, then the command:

g77 -m64 driver.f -L/opt/acml2.6.0/gnu6é4 -lacml
can be used to compile the program driver.f and link it to the ACML.

The ACML Library is supplied in both static and shareable versions, libacml.a and
libacml.so, respectively. By default, the commands given above will link to the shareable
version of the library, libacml.so, if that exists in the directory specified. Linking with the
static library can be forced either by using the compiler flag -static, e.g.

g77 -m64 driver.f -L/opt/acml2.6.0/gnu64 -static -lacml
or by inserting the name of the static library explicitly in the command line, e.g.
g77 -m64 driver.f /opt/acml2.6.0/gnu64/libacml.a

Notice that if the application program has been linked to the shareable ACML Library,
then before running the program, the environment variable LD_LIBRARY_PATH must be set,
for example, by the C-shell command:

setenv LD_LIBRARY_PATH /opt/acml2.6.0/gnu64

where it is assumed that libacml.so was installed in the directory /opt/acml2.6.0/gnu64
(see the man page for 1d(1) for more information about LD_LIBRARY_PATH.).

The command
g77 -m32 driver.f -L/opt/acml2.6.0/gnu32 -lacml
will compile and link a 32-bit program with a 32-bit ACML.

The command

Chapter 2: General Information 5)

gcc -m64 -I/opt/acml2.6.0/include driver.c
-L/opt/acml2.6.0/gnu64 -lacml -1lg2c
will compile and link a 64-bit C program with a 64-bit ACML, using the switch
"-I/opt/acml2.6.0/include" to tell the compiler to search directory /opt/acml2.6.0/include
for the ACML C header file acml.h, which should be included by driver.c. Note that it is
necessary to add the compiler run-time library -lg2c¢ when linking the program.

2.2.2 Accessing the Library under Linux using PGI compilers
pgf77/pgf90/pgcc

Similar commands apply for the PGI versions of ACML. For example,

pgf77 -tp=k8-64 -Mcache_align driver.f -L/opt/acml2.6.0/pgi64 -lacml
pgf77 -tp=k8-32 -Mcache_align driver.f -L/opt/acml2.6.0/pgi32 -lacml
will compile driver.f and link it to the ACML using 64-bit and 32-bit versions respectively.
In the example above we are linking with the single-processor PGI version of ACML.
If you have an SMP machine and want to take best advantage of it, link against the PGI
OpenMP version of ACML like this:
pgf77 -tp=k8-64 -mp -Mcache_align driver.f
-L/opt/acml2.6.0/pgi64_mp -lacml
pgf77 -tp=k8-32 -mp -Mcache_align driver.f
-L/opt/acml2.6.0/pgi32_mp -lacml
Note that the location of the ACML is now specified as pgi64_mp or pgid32_mp. The
-mp flag is important - it tells pgf77 to link with the appropriate compiler OpenMP run-
time library. Without it you might get an "unresolved symbol" message at link time. The
-Mcache_align flag is also important - it tells the compiler to align objects on cache-line
boundaries.
The commands
pgcc -c¢ -tp=k8-64 -mp -Mcache_align -I/opt/acml2.6.0/include driver.c
pgcc -tp=k8-64 -mp -Mcache_align driver.o
-L/opt/acml2.6.0/pgi64_mp -lacml -lpgftnrtl -1m
will compile driver.c and link it to the 64-bit ACML. Again, the -mp flag is important if you
are linking to the PGI OpenMP version of ACML. The switch "-I/opt/acml2.6.0/include"
tells the C compiler to search directory /opt/acml2.6.0/include for the ACML C header file
acml.h, which should be included by driver.c. Note that in the example we add the libraries
-lpgftnrtl and -Im to the link command, so that required PGI compiler run-time libraries
are found.

2.2.3 Accessing the Library under Linux using PathScale
compilers pathf90/pathcc

Similar commands apply for the PathScale versions of ACML. For example,
pathf90 driver.f -L/opt/acml2.6.0/pathscale64 -lacml
will compile driver.f and link it to the ACML using the 64-bit version.

The commands

Chapter 2: General Information 6

pathcc -c¢c -I/opt/acml2.6.0/include driver.c
pathcc driver.o -L/opt/acml2.6.0/pathscale64 -lacml -lpathfortran

will compile driver.c and link it to the 64-bit ACML. The switch "-I/opt/acml2.6.0/include"
tells the C compiler to search directory /opt/acml2.6.0/include for the ACML C header file
acml.h, which should be included by driver.c. Note that in the example we add the library
-lpathfortran to the link command, so that the required PathScale compiler run-time library
is found.

The 32-bit ACML libraries come in several versions, applicable to hardware with or
without SSE instructions (Streaming SIMD Extensions), and it is important to link to a
library that is appropriate to your hardware. The variant library versions are distinguished
by being in directories with different names.

2.2.4 Accessing the Library under Linux using compilers other
than GNU, PGI or PathScale

It may be possible to link to the g77/gcc versions of ACML using other compilers, if
they are compatible with g77/gcc. An important thing to note is that you will need to
link in required compiler run time libraries. An example using the 32-bit Intel FORTRAN
compiler ifc might look like this:

ifc driver.f -L/opt/acml2.6.0/gnu32 -lacml /usr/lib/libg2c.so

where /usr/lib/libg2c.so is required to resolve g77 compiler run-time library symbols.

2.3 Accessing the Library (Microsoft Windows)

2.3.1 Accessing the Library under 32-bit Windows using GNU
g77/gcc

Under Microsoft Windows®, for the g77/gce version of ACML it is assumed that you
have the Cygwin UNIX-like tools installed (see http://www.cygwin.com/), including the
g77/gce compiler and associated tools. Assuming you have installed the ACML in the
default place, then in a DOS command prompt window, the command

g77 driver.f "c:\Program Files\AMD\acml2.6.0\gnu32\libacml.a"

can be used to link the application program driver.f to the static library version of the
ACML.

The g77 version of the ACML Library is supplied in both static and shareable versions,
libacml.a and libacml.dll, respectively. The command given above links to the static version
of the library, libacml.a. To link to the DLL version, the command

g77 driver.f "c:\Program Files\AMD\acml2.6.0\gnu32\libacml.d1l"

can be used. Notice that if the application program has been linked to the DLL version of
the ACML Library, then before running the program, the environment variable PATH must
have been set to include the location of the DLL, for example by the DOS command:

Chapter 2: General Information 7

PATH="c:\Program Files\AMD\acml2.6.0\gnu32";%PATH,

where it was assumed that libacml.dll was installed in the directory "c:\Program
Files\AMD\acml2.6.0\gnu32". Alternatively, the PATH environment variable may be set
in the system category of the Windows control panel.
The command
gcc "-Ic:\Program Files\AMD\acml2.6.0\include" driver.c
"c:\Program Files\AMD\acml2.6.0\gnu32\libacml.a" -1lg2c

will compile driver.c and link it to the 32-bit g77/gcc version of ACML. The switch
"-Ie:\Program Files\AMD\acml2.6.0\include" tells the gcc compiler to search directory
"c:\Program Files\AMD\acml2.6.0\include" for the ACML C header file acml.h, which
should be included by driver.c. Note that it is necessary to add the compiler run-time
library -lg2c when linking the program.

2.3.2 Accessing the Library under 32-bit Windows using PGI
compilers pgf77/pgf90/pgcc

To use the 32-bit Windows PGI version of ACML, use a command like
pgf77 -Mcache_align driver.f
"c:\Program Files\AMD\acml2.6.0\pgi32\libacml.a"
or
pgcc —c¢ "-Ic:\Program Files\AMD\acml2.6.0\include"
-Mcache_align driver.c
pgcc -Mcache_align driver.o

"c:\Program Files\AMD\acml2.6.0\pgi32\libacml.a"
-lpgftnrtl -lpgssel -lpgsse2 -1m

Note that in the example we link the program with -lpgftnrtl -Ipgssel -lpgsse2 -lm so that
required PGI run-time libraries are located.
If you have an SMP machine and want to take best advantage of it, link against the PGI
OpenMP version of ACML like this:
pgf77 -mp -Mcache_align driver.f
"c:\Program Files\AMD\acml2.6.0\pgi32\libacml.a"

Note that the location of the ACML is now specified as pgi32_mp. The -mp flag is
important - it tells pgf77 to link with the appropriate compiler OpenMP run-time library.
Without it you might get an "unresolved symbol" message at link time. The -Mcache_align
flag is also important - it tells the compiler to align objects on cache-line boundaries. The
-mp flag is also required if you compile and link a C program to the pgi32_mp libraries.

2.3.3 Accessing the Library under 32-bit Windows using Microsoft
C or Visual Fortran

To use the 32-bit Windows MSC/CVF version of ACML, use a command like

cvf /threads /libs:d1ll driver.f
"c:\Program Files\AMD\acml2.6.0\win32\libacml_d11.1ib"

where libacml_dll.1ib is the import library for the ACML DLL,

Chapter 2: General Information 8

or

cl "-Ic:\Program Files\AMD\acml2.6.0\include"
/Gz /MD driver.c
"c:\Program Files\AMD\acml2.6.0\win32\1libacml_dl1l.1ib"

where cvf is the Compaq Visual Fortran command line compiler and cl is the Microsoft C
command line compiler. The flag /Gz used on the C compiler command line is important -
it tells it to use the _stdcall calling convention rather than the default Microsoft C __cdecl
calling convention. All ACML user-callable routines were built using _stdcall to ensure that
the ACML DLL is easily accessible from any language compatible with that convention (for
example, Microsoft Visual Basic or Microsoft C#).

ACML can also be linked from inside a development environment such as Microsoft
Visual Studio or Visual Studio.NET. Again, it is important to get compilation options
correct. The directory acml2.6.0\win32\examples\Projects contains a few sample Visual
Studio project directories showing how this can be done.

Note that in both examples above we linked to a DLL version of ACML, and so before
running the resulting programs the environment variable PATH must be set to include the
location of the DLL, for example by the DOS command:

PATH="c:\Program Files\AMD\acml2.6.0\win32";%PATH,

where it is assumed that libacml_dll.dll was installed in the directory
"c:\Program Files\AMD\acmlI2.6.0\win32". Alternatively, the PATH environ-
ment variable may be set in the system category of the Windows control panel.

ACML also comes as a static (non-DLL) library, named libacml.lib, in the same directory
as the DLL. If you link to the static library instead of the DLL import library then there is
no need to set the PATH.

2.3.4 Accessing the Library under 64-bit Windows

Under 64-bit versions of Windows, ACML 2.6.0 comes only as a static (.LIB) library for
single processor machines (the library can be used on an SMP machine but will not take
advantage of more than one processor). The compiler can be used with the PGI compilers
pef77/pef90/pgee or with the Microsoft C compiler, though with the latter compiler it is
necessary also to link with PGI run-time libraries.

To link with the 64-bit Windows version of ACML, in a DOS command prompt use a
command like

pgf77 driver.f c:/Program Files/AMD/acml2.6.0/win64/libacml.lib
or, for a C program,

pgecc driver.c -Ic:/Program Files/AMD/acml2.6.0/include
c:/Program Files/AMD/acml2.6.0/win64/libacml.lib
-lpgftnrtl -1m

Note that in the C example we link the program with -Ipgftnrtl -lm so that required PGI
run-time libraries are located.

To use the Microsoft C command line compiler, cl, use a command like this:

Chapter 2: General Information 9

cl driver.c -Ic:/Program Files/AMD/acml2.6.0/include
c:/Program Files/AMD/acml2.6.0/win64/libacml.1lib
c:/usr/pgi/win64/1.0/1ib/libpgftnrtl.1lib
c:/usr/pgi/win64/1.0/1ib/libpgc.1lib

The references to libpgftnrtl.lib and libpge.lib must point at the location of an installed
copy of the PGI compilers.

2.4 ACML FORTRAN and C interfaces

All routines in ACML come with both FORTRAN and C interfaces. The FORTRAN
interfaces typically follow the relevant standard (e.g. LAPACK, BLAS). Here we document
how a C programmer should call ACML routines.

In C code that uses ACML routines, be sure to include the header file <acml.h>, which
contains function prototypes for all ACML C interfaces. The header file also contains C
prototypes for FORTRAN interfaces, thus the C programmer could call the FORTRAN
interfaces from C, though there is little reason to do so.

C interfaces to ACML routines differ from FORTRAN interfaces in the following major
respects:

e The FORTRAN interface names are appended by an underscore (except for the Win-
dows 32-bit Microsoft C/Compaq Visual Fortran (CVF) version of ACML, where FOR-
TRAN interface names are distinguished from C by being upper case rather than lower
case - this is the default for the CVF compiler)

e The C interfaces contain no workspace arguments; all workspace memory is allocated
internally.

e Scalar input arguments are passed by value in C interfaces. FORTRAN interfaces pass
all arguments (except for character string length arguments that are normally hidden
from FORTRAN programmers) by reference.

e Most arguments that are passed as character string pointers to FORTRAN interfaces

are passed by value as single characters to C interfaces. The character string length
arguments of FORTRAN interfaces are not required in the C interfaces.

e Unlike FORTRAN, C has no native complex data type. ACML C routines which
operate on complex data use the types complex and doublecomplex defined in <acml.h>
for single and double precision computations respectively. Some of the programs in the
ACML examples directory (see Section 2.7 [Examples|, page 11) make use of these

types.

It is important to note that in both the FORTRAN and C interfaces, 2-dimensional
arrays are assumed to be stored in column-major order. e.g. the matrix

1.0 2.0
A= <3.0 4.0)
would be stored in memory as 1.0, 3.0, 2.0, 4.0. This storage order corresponds to a

FORTRAN-style 2-D array declaration A(2,2), but not to an array declared as a[2][2] in C
which would be stored in row-major order as 1.0, 2.0, 3.0, 4.0.

Chapter 2: General Information 10

As an example, compare the FORTRAN and C interfaces of LAPACK routine dsytrf as
implemented in ACML.

FORTRAN:

void dsytrf_(char *uplo, int *n, double *a, int *1lda, int *ipiv,
double *work, int *lwork, int *info, int uplo_len);

void dsytrf(char uplo, int n, double *a, int lda, int *ipiv,
int *info);

C code calling both the above variants might look like this:

double *a;

int *ipiv;

double *work;

int n, lda, lwork, info;

/* Assume that all arrays and variables are allocated and
initialized as required by dsytrf. */

/* Call the FORTRAN version of dsytrf. The first argument
is a character string, and the last argument is the
length of that string. The input scalar arguments n, lda
and lwork, as well as the output scalar argument info,
are all passed by reference. */

dsytrf_("Upper", &n, a, &lda, ipiv, work, &lwork, &info, 5);

/* Call the C version of dsytrf. The first argument is a
character, workspace is not required, and input scalar
arguments n and lda are passed by value. Output scalar
argument info is passed by reference. */

dsytrf(°U’, n, a, lda, ipiv, &info);

2.5 Library Version and Build Information

This document is applicable to version 2.6.0 of ACML. The utility routine acmlversion
can be called to obtain the major, minor and patch version numbers of the installed ACML.
This routine returns three integers; the major, minor and patch version numbers, respec-
tively.

The utility routine acmlinfo can be called to obtain information on the compiler used
to build ACML, the version of the compiler, and the options used for building the Library.
This subroutine takes no arguments and prints the information to the current standard
output.

FORTRAN specifications:

ACMLVERSION (MAJOR, MINOR, PATCH) [SUBROUTINE]
MAJOR, MINOR, PATCH [INTEGER]

Chapter 2: General Information 11

ACMLINFO () [SUBROUTINE]

C specifications:

void acmlversion (int *major, int *minor, int *patch); [function]

void acmlinfo (void); [function]

2.6 Library Documentation

The /Doc subdirectory of the top ACML installation directory, (e.g. /opt/acml2.6.0/Doc
under Linux, or ¢:\Program Files\AMD\acml2.6.0\Doc under Windows), should contain
this document in the following formats:

Printed Manual / PDF format — acml.pdf
Info Pages — acml.info (Linux only)
Html — html/index.html

Plain text — acml.txt

Under Linux the info file can be read using info after updating the environment variable
INFOPATH to include the doc subdirectory of the ACML installation directory, e.g.

% setenv INFOPATH ${INFOPATH}:/opt/acml2.6.0/Doc

% info acml
or simply by using the full name of the file:
% info /opt/acml2.6.0/Doc/acml.info

2.7 Example programs calling ACML

The /examples subdirectory of the top ACML installation directory (for example, possi-
ble default locations are /opt/acml2.6.0/gnu64/examples under Linux, or, under windows,
c:\Program Files\AMD\acml2.6.0\gnu32\examples), contains example programs showing
how to call the ACML, along with a GNUmakefile to build and run them. Examples of
calling both FORTRAN and C interfaces are included. They may be used as an ACML
installation test.

Depending on where your copy of the ACML is installed, and which compiler and flags
you wish to use, it may be necessary to modify some variables in the GNUmakefile before
using it.

The 32-bit Windows versions of ACML assume that you have the Cygwin UNIX-like tools
installed, and can use the make command that comes with them to build the examples.

For the 64-bit Windows version of ACML, it is not necessary to have the Cygwin tools.
The examples directory contains a bat script, acmlexample.bat, which can be used to run
one of the example programs. Another bat script, acmlallexamples.bat, builds and runs all
the examples in the directory. Alternatively, if you do have the Cygwin tools installed, you
can use the GNUmakefile to build the examples.

Chapter 3: BLAS: Basic Linear Algebra Subprograms 12

3 BLAS: Basic Linear Algebra Subprograms

The BLAS are a set of well defined basic linear algebra operations ([1], [2], [3]). These
operations are subdivided into three groups:

e Level 1: operations acting on vectors only (e.g. dot product)
e Level 2: matrix-vector operations (e.g. matrix-vector multiplication)
e Level 3: matrix-matrix operations (e.g. matrix-matrix multiplication)
Efficient machine-specific implementations of the BLAS are available for many modern
high-performance computers. The implementation of higher level linear algebra algorithms
on these systems depends critically on the use of the BLAS as building blocks. AMD

provides, as part of the ACML, an implementation of the BLAS optimized for performance
on AMDG64 processors.

For any information relating to the BLAS please refer to the BLAS FAQ:
http://www.netlib.org/blas/faq.html

ACML also includes interfaces to the extensions to Level 1 BLAS known as the sparse
BLAS. These routines perform operations on a sparse vector x which is stored in compressed
form and a vector y in full storage form. See reference [4] for more information.

http://www.netlib.org/blas/faq.html

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 13

4 LAPACK: Package of Linear Algebra
Subroutines

4.1 Introduction to LAPACK

LAPACK ([5]) is a library of FORTRAN 77 subroutines for solving commonly occurring
problems in numerical linear algebra. LAPACK components can solve systems of linear
equations, linear least squares problems, eigenvalue problems and singular value problems.
Dense and banded matrices are provided for, but not general sparse matrices. In all areas,
similar functionality is provided for real and complex matrices.

LAPACK routines are written so that as much as possible of the computations is per-
formed by calls to the BLAS. The efficiency of LAPACK routines depends, in large part, on
the efficiency of the BLAS being called. Block algorithms are employed wherever possible
to maximize the use of calls to level 3 BLAS, which generally run faster than lower level
BLAS due to the high number of operations per memory access.

The performance of some of the LAPACK routines has been further improved by re-
working the computational algorithms. Some of the LAPACK routines contained in ACML
are therefore based on code that is different from the LAPACK sources available in the
public domain. In all these cases the algorithmic and numerical properties of the origi-
nal LAPACK routines have been strictly preserved. Furthermore, key LAPACK routines
have been treated using OpenMP to take advantage of multiple processors when running
on SMP machines. Your application will automatically benefit when you link with the
OpenMP versions of ACML.

4.2 Reference sources for LAPACK

The LAPACK homepage can be accessed on the World Wide Web via the URL address:
http://www.netlib.org/lapack/

The on-line version of the Lapack User’s Guide, Third Edition ([5]) is available from this
homepage, or directly using the URL:

http://www.netlib.org/lapack/lug/index.html

The standard source code is available for download from netlib, with separate distributions
for UNIX/Linux and Windows® installations:

http://www.netlib.org/lapack/lapack.tgz
http://www.netlib.org/lapack/lapack-pc.zip

A list of known problems, bugs, and compiler errors for LAPACK, as well as an errata list
for the LAPACK User’s Guide ([5]), is maintained on netlib

http://wwuw.netlib.org/lapack/release_notes

A LAPACK FAQ (Frequently Asked Questions) file can also be accessed via the LAPACK
homepage

http://www.netlib.org/lapack/faq.html

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/lug/index.html
http://www.netlib.org/lapack/lapack.tgz
http://www.netlib.org/lapack/lapack-pc.zip
http://www.netlib.org/lapack/release_notes
http://www.netlib.org/lapack/faq.html

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 14

4.3 LAPACK block sizes and the ILAENYV and
ILAENVSET routines

As described in Section 6.2 of the LAPACK User’s Guide, block sizes and other pa-
rameters used by various LAPACK routines are returned by the LAPACK inquiry function
ILAENV. In ACML, values returned by ILAENV have been chosen to achieve very good
performance on a wide variety of hardware and problem sizes.

In general it is unlikely that you will want or need to be concerned with these parameters.
However, in some cases it may be that a default value returned by ILAENYV is not optimal
for your particular hardware and problem size. Following the advice in the LAPACK User’s
Guide may enable you to choose a better value in some circumstances.

For convenience, ACML includes a subroutine which allows you to override default values
returned by ILAENYV if you have superior knowledge. The routine is named ILAENVSET
and has the following specification.

ILAENVSET [SUBROUTINE]
(ISPEC,NAME,OPTS,N1,N2,N3,N4,NVALUE,INFO)
INTEGER ISPEC [Input]

On input: ISPEC specifies the parameter to be set (see Section 6.2 of the
LAPACK User’s Guide for details).

CHARACTER* (x) NAME [Input]
On input: NAME specifies the name of the LAPACK subroutine for which the
parameter is to be set.

CHARACTER* (x) OPTS [Input]
On input: OPTS is a character string of options to the subroutine.

INTEGER N1, N2, N3, N4 [Input]
On input: N1, N2, N3 and N4 are problem dimensions. A value of -1 means
that the dimension is unused or irrelevant.

INTEGER NVALUE [Input]
On input: NVALUE is the value to be set for the parameter specified by IS-
PEC. This value will be retrieved by any future call of ILAENV with similar
arguments, including the call of ILAENV coming directly from the routine spec-
ified by argument NAME. In most cases, but not all, the value set will apply
irrespective of the values of arguments OPTS, N1, N2, N3 and N4.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

All arguments of ILAENVSET apart from the last two, NVALUE and INFO, are identical
to the arguments of ILAENV. ILAENVSET should be called before you call the LAPACK
routine in question.

It should be noted that not all LAPACK routines make use of the ILAENV mechanism
(because not all routines use blocked algorithms or require other tuning parameters). Calls
of ILAENVSET with argument NAME set to the name of such a routine will fail with INFO=0.

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 15

In addition, the ACML versions of some important routines that do use blocked algorithms,
such as the QR factorization routine DGEQRF, bypass ILAENV because they make use of a
different tuning system which is independent of standard LAPACK. For all such routines,
ILAENVSET can still be called with no error exit, but calls will have no effect on performance
of the routine.

Below we give examples of how to call ILAENVSET in both FORTRAN and C.

-

Example (FORTRAN code):

INTEGER ILO, IHI, INFO, N, NS

CHARACTER COMPZ, JOB

INTEGER ILAENV

EXTERNAL ILAENV, ILAENVSET

JOB = ’E’

COMPZ = I’

N = 512

II0 = 1

IHI = 512

Check the default shift parameter (ISPEC=4) used by DHSEQR
NS = ILAENV(4, ’DHSEQR’, JOB//COMPZ, N, ILO, IHI, -1)
WRITE (*,*) ’Default NS = ’, NS

Set a new value 5 for the shift parameter

CALL ILAENVSET(4, °DHSEQR’, JOB//COMPZ, N, ILO, IHI, -1, 5, INFO)
Then check the shift parameter again

NS = ILAENV(4, ’DHSEQR’, JOB//COMPZ, N, ILO, IHI, -1)
WRITE (*,*) ’Revised NS = ’, NS

END

Chapter 4: LAPACK: Package of Linear Algebra Subroutines 16

-

Example (C code):

#include <acml.h>

#include <stdio.h>

int main(void)

{
int n=512, ilo=1, ihi=b12, ns, info;
char compz = ’I’, job = ’E’, opts[3];

opts[0] = job;
opts[1] = compz;
opts[2] = °\0’;

/* Check the default shift parameter (ISPEC=4) used by DHSEQR */
ns = ilaenv(4, "DHSEQR", opts, n, ilo, ihi, -1);
printf ("Default ns = %d\n", ns);
/* Set a new value 5 for the shift parameter */
ilaenvset(4, "DHSEQR", opts, n, ilo, ihi, -1, 5, &info);
/* Then check the shift parameter again */
ns = ilaenv(4, "DHSEQR", opts, n, ilo, ihi, -1);
printf ("Revised ns = %d\n", ns);
return O;

3

Chapter 5: Fast Fourier Transforms (FFTs) 17

5 Fast Fourier Transforms (FFTs)

5.1 Introduction to FFTs

5.1.1 Data Types and Storage

There are two main types of DFTs:

e routines for the transformation of complex data: in the ACML, these routines have
names beginning with ZFFT or CFFT, for double and single precision, respectively;

e routines for the transformation of real to complex data and vice versa: in the ACML
the names for the former begin with DZFFT or SCFFT, for double and single precision,
respectively; the names for the latter begin with ZDFFT or CSFFT.

Complex data

The simplest transforms to describe are those performed on sequences of complex data.
Such data are stored as arrays of type complex. The result of a complex FFT is also a
complex sequence of the same length and, for the simple interfaces, is written back to the
original array. Where multiple (m, say), same-length sequences (of length n) of complex
data are to be transformed, the sequences are held in a single complex array; in the simple
interfaces the array will be of length m % n containing m end-to-end sequences and the
results of the m FFTs are returned in the original array. Expert interfaces are provided
which give: greater flexibility in the storage of the original data and results, user provided
scaling, and whether results should be written to a separate array or not.

The definition of a complex DFT used here is given by:

@-zirfzckexp (:l:iQij> forj=0,1,...,n—1
Vv = n

where x;, are the complex data to be transformed, Z; are the transformed data, and the sign
of & determines the direction of the transform: (—) for forward and (+) for backward. Note
that, in this definition, both directional transforms have the same scaling and performing
both consecutively recovers the original data; this is the prescribed scaling provided in the
simple FF'T interfaces, whereas, in the expert interfaces, the scaling factor must be supplied
by the user.

For the simple interfaces, a two dimensional array of complex data, with m rows and n
columns is stored in the same order as a set of n sequences of length m (as described above).
That is, column elements are stored contiguously and the first element of the next column
follows the last element of the current column. In the expert interfaces, column elements
may be separated by a fixed step length (increment) while row elements may be separated
by a second increment; if the first increment is 1 and the second increment is m then we
have the same storage as in the simple interface.

Chapter 5: Fast Fourier Transforms (FFTs) 18

The definition of a complex 2D DFT used here is given by:

1 &= 2mjk 2mpl
Tjp = —F— Z Z:ckl exp <j:i 7:‘3 > exp (izﬁ)

M*n 925 k=o
forj=0,1,...,.n—1and I =0,1,...,m — 1, where x,, are the complex data to be trans-
formed, 7, are the transformed data, and the sign of £+ determines the direction of the
transform.

Real data

The DFT of a sequence of real data results in a special form of complex sequence known
as a Hermitian sequence. The symmetries defining such a sequence mean that it can be
fully represented by a set of n real values, where n is the length of the original real sequence.
It is therefore conventional for the array containing the real sequence to be overwritten by
such a representation of the transformed Hermitian sequence.

If the original sequence is purely real valued, i.e. z; = x;, then the definition of the real
DFT used here is given by:

n—1

- , 1 .
Zj = a; +1b; = ﬁZxkexp <—z
k=0

2mjk

) forj=0,1,...,n—1
n

where), are the real data to be transformed, z; are the transformed complex data.

In full complex representation, the Hermitian sequence would be a sequence of n complex
values Z(i) for i = 0,1,...,n — 1, where Z(n — j) is the complex conjugate of Z(j) for
j=1,2,....,(n—1)/2; Z(0) is real valued; and, if n is even, Z(n/2) is real valued. In ACML,
the representation of Hermitian sequences used on output from DZFFT routines and on input
to ZDFFT routines is as follows:
let X be an array of length N and with first index 0,

e X (i) contains the real part of Z(i) for i =0, ..., N/2
e X (N —1i) contains the imaginary part of Z(i) for i =1,...,(N —1)/2
Also, given a Hermitian sequence, the discrete transform can be written as:

n/2—1 . .
1 2mjk . (2mjk
T, = % ap + 2 kZ::l (ak cos <n> — by, sin (n)) + 2

where a,/2 = 0 if n is odd, and %z, = a;, + ib;, is the Hermitian sequence to be transformed.
Note that, in the above definitions, both transforms have the same (negative) sign in the
exponent; performing both consecutively does not recover the original data. To recover
original real data, or otherwise to perform an inverse transform on a set of Hermitian data,
the Hermitian data must be conjugated prior to performing the transform (i.e. changing
the sign of the stored imaginary parts).

5.1.2 Efficiency

The efficiency of the FFT is maximized by choosing the sequence length to be a power of
2. Good efficiency can also be achieved when the sequence length has small prime factors,
up to a factor 13; however, the time taken for an FFT increases as the size of the prime
factor increases.

Chapter 5: Fast Fourier Transforms (FFTs) 19

5.2 FFTs on Complex Sequences

5.2.1 FFT of a single sequence

The routines documented here compute the discrete Fourier transform (DFT) of a se-
quence of complex numbers in either single or double precision arithmetic. The DFT is
computed using a highly-efficient FFT algorithm. There are two sets of interfaces available:
simple drivers and expert drivers. The simple drivers perform in-place transforms on data
held contiguously in memory using a fixed scaling factor; these are simpler to use and are
sufficient for many problems. The expert drivers offer greater flexibility by including a
number of additional arguments. These allow you to control: the scaling factor applied;
whether the result should be output to a separate vector; and, the increments used in storing
successive elements of both the input sequence and the result.

ZFFT1D Routine Documentation

ZFFT1D (MODE,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by ZFFT1D.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=-—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT1D.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to ZFFT1D.

MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

INTEGER N [Input]
On input: N is the length of the complex sequence X

COMPLEX*16 X (IN) [Input/Output]
On input: X contains the complex sequence of length N to be transformed.
On output: X contains the transformed sequence.

COMPLEX*16 COMM (3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs)

20

Example:

~
CALL ZFFT1D(O,N,X,COMM, INFO)
CALL ZFFT1D(-1,N,X,COMM, INFO)
CALL ZFFT1D(-1,N,Y,COMM, INFO)
DO 10 I =1, N

X(I) = X(I)*DCONJG(Y(I))
10 CONTINUE

CALL ZFFT1D(1,N,X,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 21

CFFT1D Routine Documentation

CFFT1D (MODE,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by CFFT1D.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=-—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to CFFT1D.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to CFFT1D.

MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

INTEGER N [Input]
On input: N is the length of the complex sequence X

COMPLEX X(N) [Input/Output]
On input: X contains the complex sequence of length N to be transformed.
On output: X contains the transformed sequence.

COMPLEX COMM (5*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-

CALL CFFT1D(0,N,X,COMM,INFO)
CALL CFFT1D(-1,N,X,COMM,INFO)
CALL CFFT1D(-1,N,Y,COMM,INFO)
DO 10 I =1, N
X(I) = X(I)*CONJG(Y(I))
10 CONTINUE
CALL CFFT1D(1,N,X,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 22

ZFFT1DX Routine Documentation

ZFFT1DX (MODE,SCALE,INPL,N,X,INCX,Y,INCY,COMM, [SUBROUTINE]
INFO)

INTEGER MODE [Input]

The value of MODE on input determines the operation performed by ZFFT1DX.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT1DX.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to ZFFT1DX.

MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

DOUBLE PRECISION SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequence

LOGICAL INPL [Input]
On input: if INPL is .TRUE. then X is overwritten by the output sequence;
otherwise the output sequence is returned in Y.

INTEGER N [Input]
On input: N is the number of elements to be transformed

COMPLEX*16 X (1+(N-1)*INCX) [Input/Output]
On input: X contains the complex sequence of length N to be transformed,
with the ith element stored in X(1+(i-1)*INCX).

On output: if INPL is .TRUE. then X contains the transformed sequence in
the same locations as on input; otherwise X remains unchanged.

INTEGER INCX [Input]
On input: INCX is the increment used to store successive elements of a sequence
in X.

Constraint: INCX > 0.

COMPLEX*16 Y (1+(N-1)*INCY) [Output]
On output: if INPL is .FALSE. then Y contains the transformed sequence, with
the ith element stored in Y(1+(i-1)*INCY); otherwise Y is not referenced.

INTEGER INCY [Input]
On input: INCY is the increment used to store successive elements of a sequence
in Y. If INPL is . TRUE. then INCY is not referenced.

Constraint: INCY > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 23

COMPLEX*16 COMM (5*N+100) [Input/Output]

COMM is a communication array. Some portions of the array are used to

store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-~

C Forward FFTs are performed unscaled and in-place on contiguous
C vectors X and Y following initialisation. Manipulations on

C resultant Fourier coefficients are stored in X which is then

C transformed back.

C

10

SCALE = 1.0DO
INPL = .TRUE.
CALL ZFFT1DX(0,SCALE,INPL,N,X,1,DUM,1,COMM, INFO)
CALL ZFFT1DX(-1,SCALE,INPL,N,X,1,DUM,1,COMM, INFO)
CALL ZFFT1DX(-1,SCALE,INPL,N,Y,1,DUM,1,COMM, INFO)
DO 10 I = 1, N

X(I) = X(I)*DCONJG(Y(I))/DBLE(N)
CONTINUE
CALL ZFFT1DX(1,SCALE,INPL,N,X,1,DUM,1,COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 24

CFFT1DX Routine Documentation

CFFT1DX (MODE,SCALE,INPL,N,X,INCX,Y,INCY,COMM, [SUBROUTINE]
INFO)
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by CFFT1DX.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to CFFT1DX.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to CFFT1DX.
MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

REAL SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequence

LOGICAL INPL [Input]
On input: if INPL is .TRUE. then X is overwritten by the output sequence;
otherwise the output sequence is returned in Y.

INTEGER N [Input]
On input: N is the number of elements to be transformed

COMPLEX X (1+(N-1)*INCX) [Input/Output]
On input: X contains the complex sequence of length N to be transformed,
with the ith element stored in X(1+(i-1)*INCX).

On output: if INPL is .TRUE. then X contains the transformed sequence in
the same locations as on input; otherwise X remains unchanged.

INTEGER INCX [Input]
On input: INCX is the increment used to store successive elements of a sequence
in X.

Constraint: INCX > 0.

COMPLEX Y (1+(N-1)*INCY) [Output]
On output: if INPL is .FALSE. then Y contains the transformed sequence, with
the ith element stored in Y(1+(i-1)*INCY); otherwise Y is not referenced.

INTEGER INCY [Input]
On input: INCY is the increment used to store successive elements of a sequence
in Y. If INPL is . TRUE. then INCY is not referenced.

Constraint: INCY > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 25

COMPLEX COMM (5*N+100) [Input/Output]

COMM is a communication array. Some portions of the array are used to

store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-~

C Forward FFTs are performed unscaled and in-place on contiguous
C vectors X and Y following initialisation. Manipulations on

C resultant Fourier coefficients are stored in X which is then

C transformed back.

C

10

SCALE = 1.0
INPL = .TRUE.
CALL CFFT1DX(0,SCALE,INPL,N,X,1,DUM,1,COMM, INFO)
CALL CFFT1DX(-1,SCALE,INPL,N,X,1,DUM,1,COMM, INFO)
CALL CFFT1DX(-1,SCALE,INPL,N,Y,1,DUM,1,COMM, INFO)
DO 10 I = 1, N

X(I) = X(I)*CONJG(Y(I))/REAL(N)
CONTINUE
CALL CFFT1DX(1,SCALE,INPL,N,X,1,DUM,1,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 26

5.2.2 FFT of multiple complex sequences

The routines documented here compute the discrete Fourier transforms (DFTs) of a
number of sequences of complex numbers in either single or double precision arithmetic.
The sequences must all have the same length. The DFTs are computed using a highly-
efficient FFT algorithm. There are two sets of interfaces available: simple drivers and
expert drivers. The simple drivers perform in-place transforms on data held contiguously
in memory using a fixed scaling factor; these are simpler to use and are sufficient for many
problems. The expert drivers offer greater flexibility by including a number of additional
arguments. These allow you to control: the scaling factor applied; whether the result
should be output to a separate vector; the increments used in storing successive elements of
a given sequence (for both input and output sequences); and the increments used in storing
corresponding elements in successive sequences (for both input and output).

ZFFT1M Routine Documentation

ZFFT1M (MODE,M,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by ZFFT1M.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=-—1 or 1.

MODE=-1 : forward transforms are performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT1M.

MODE=1 : backward (reverse) transforms are performed. Initializations
are assumed to have been performed by a prior call to ZFFT1M.

MODE=-2 : initializations and forward transforms are performed.
MODE=2 : initializations and backward transforms are performed.

INTEGER M [Input]
On input: M is the number of sequences to be transformed.

INTEGER N [Input]
On input: N is the length of the complex sequences in X

COMPLEX*16 X (N*M) [Input/Output]

On input: X contains the M complex sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j — 1) * N of X.
On output: X contains the transformed sequences.

COMPLEX*16 COMM (3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs)

Example:

27

10

CALL ZFFT1M(O,1,N,X,COMM,INFO)
CALL ZFFT1M(-1,2,N,X,COMM, INFO)
DO 10 I =1, N
X(I,3) = X(I,1)*DCONJG(X(I,2))
X(I,2) = DCMPLX(0.0DO,1.0D0)*X(I,2)
CONTINUE
CALL ZFFT1M(1,2,N,X(1,2),COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 28

CFFT1M Routine Documentation

CFFT1M (MODE,M,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by CFFT1M.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=-—1 or 1.

MODE=-1 : forward transforms are performed. Initializations are as-
sumed to have been performed by a prior call to CFFT1M.

MODE=1 : backward (reverse) transforms are performed. Initializations
are assumed to have been performed by a prior call to CFFT1M.

MODE=-2 : initializations and forward transforms are performed.

MODE=2 : initializations and backward transforms are performed.

INTEGER M [Input]
On input: M is the number of sequences to be transformed.

INTEGER N [Input]
On input: N is the length of the complex sequences in X

COMPLEX X (N*M) [Input/Output]
On input: X contains the M complex sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j — 1) * N of X.

On output: X contains the transformed sequences.

COMPLEX COMM (5*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-

CALL CFFT1M(0,1,N,X,COMM, INFO)
CALL CFFT1M(-1,2,N,X,COMM,INFO)
DO 10 I =1, N
X(I,3) = X(I,1)*CONJG(X(T,2))
X(I,2) = CMPLX(0.0D0,1.0D0)*X(I,2)
10 CONTINUE
CALL CFFT1M(1,2,N,X(1,2),COMM,INF0)

Chapter 5: Fast Fourier Transforms (FFTs) 29

ZFFT1MX Routine Documentation

ZFFT1MX (MODE,SCALE,INPL,NSEQ,N,X,INCX1,INCX2, [SUBROUTINE]
Y,INCY1,INCY2,COMM,INFO)
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by ZFFT1MX.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT1MX.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to ZFFT1MX.

MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

DOUBLE PRECISION SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequences

LOGICAL INPL [Input]
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

INTEGER NSEQ [Input]
On input: NSEQ is the number of sequences to be transformed

INTEGER N [Input]
On input: N is the number of elements in each sequence to be transformed

COMPLEX*16 X (1+(N-1)*INCX1+(NSEQ-1)*INCX2) [Input/Output]
On input: X contains the NSEQ complex sequences of length N to be
transformed; the ith element of sequence j is stored in X(1+(i-1)*INCX1+(j-
1)*INCX2).

On output: if INPL is .TRUE. then X contains the transformed sequences in
the same locations as on input; otherwise X remains unchanged.

INTEGER INCX1 [Input]
On input: INCX1 is the increment used to store successive elements of a given

sequence in X (INCX1=1 for contiguous data).
Constraint: INCX1 > 0.

INTEGER INCX2 [Input]
On input: INCX2 is the increment used to store corresponding elements of
successive sequences in X (INCX2=N for contiguous data).

Constraint: INCX2 > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 30

COMPLEX*16 Y (1+(N-1)*INCY1+(NSEQ-1)*INCY2) [Output]
On output: if INPL is .FALSE. then Y contains the transformed sequences
with the ith element of sequence j stored in Y(1+(i-1)*INCY1+(j-1)*INCY2);
otherwise Y is not referenced.

INTEGER INCY1 [Input]
On input: INCY1 is the increment used to store successive elements of a given
sequence in Y. If INPL is .TRUE. then INCY1 is not referenced.

Constraint: INCY1 > 0.

INTEGER INCY2 [Input]
On input: INCY2 is the increment used to store corresponding elements of
successive sequences in Y (INCY2=N for contiguous data). If INPL is .TRUE.
then INCY?2 is not referenced.

Constraint: INCY2 > 0.

COMPLEX*16 COMM (3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

(N
C Forward FFTs are performed unscaled and in-place on two

C contiguous vectors stored in the first two columns of X.

C Manipulations are stored in 2nd and 3rd columns of X which are

C then transformed back.

C

COMPLEX *16 X(N,3)
SCALE = 1.0DO
INPL = .TRUE.
CALL ZFFT1MX(0,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM, INFO)
CALL ZFFT1MX(-1,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM, INFO)
DO 10 I =1, N
X(I,3) = X(I,1)*DCONJG(X(I,2))/DBLE(N)
X(I,2) = DCMPLX(0.0DO,1.0D0)*X(I,2)/DBLE(N)
10 CONTINUE
CALL ZFFT1MX(1,SCALE,INPL,2,N,X(1,2),1,N,DUM,1,N,COMM,INFQ)

Chapter 5: Fast Fourier Transforms (FFTs) 31

CFFT1MX Routine Documentation

CFFT1MX (MODE,SCALE,INPL,NSEQ,N,X,INCX1,INCX2, [SUBROUTINE]
Y,INCY1,INCY2,COMM,INFO)
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by CFFT1MX.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to CFFT1MX.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to CFFT1MX.

MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

REAL SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequences

LOGICAL INPL [Input]
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

INTEGER NSEQ [Input]
On input: NSEQ is the number of sequences to be transformed

INTEGER N [Input]
On input: N is the number of elements in each sequence to be transformed

COMPLEX X (1+(N-1)*INCX1+(NSEQ-1)*INCXZ2) [Input/Output]
On input: X contains the NSEQ complex sequences of length N to be
transformed; the ith element of sequence j is stored in X(1+(i-1)*INCX1+(j-
1)*INCX2).

On output: if INPL is .TRUE. then X contains the transformed sequences in
the same locations as on input; otherwise X remains unchanged.

INTEGER INCX1 [Input]
On input: INCX1 is the increment used to store successive elements of a given
sequence in X (INCX1=1 for contiguous data).

Constraint: INCX1 > 0.

INTEGER INCX2 [Input]
On input: INCX2 is the increment used to store corresponding elements of
successive sequences in X (INCX2=N for contiguous data).

Constraint: INCX2 > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 32

COMPLEX Y (1+(N-1)*INCY1+(NSEQ-1)*INCY?2) [Output]
On output: if INPL is .FALSE. then Y contains the transformed sequences
with the ith element of sequence j stored in Y(1+(i-1)*INCY1+(j-1)*INCY2);
otherwise Y is not referenced.

INTEGER INCY1 [Input]
On input: INCY1 is the increment used to store successive elements of a given
sequence in Y. If INPL is .TRUE. then INCY1 is not referenced.

Constraint: INCY1 > 0.

INTEGER INCY2 [Input]
On input: INCY2 is the increment used to store corresponding elements of
successive sequences in Y (INCY2=N for contiguous data). If INPL is .TRUE.
then INCY?2 is not referenced.

Constraint: INCY2 > 0.

COMPLEX COMM (5*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

(N
C Forward FFTs are performed unscaled and in-place on two

C contiguous vectors stored in the first two columns of X.

C Manipulations are stored in 2nd and 3rd columns of X which are

C then transformed back.

C

COMPLEX X(N,3)
SCALE = 1.0
INPL = .TRUE.
CALL CFFT1MX(O,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM, INFO)
CALL CFFT1MX(-1,SCALE,INPL,2,N,X,1,N,DUM,1,N,COMM, INFO)
DO 10 I =1, N
X(I,3) = X(I,1)*CONJG(X(I,2))/REAL(N)
X(I,2) = CMPLX(0.0DO,1.0D0)*X(I,2)/REAL(N)
10 CONTINUE
CALL CFFT1MX(1,SCALE,INPL,2,N,X(1,2),1,N,DUM,1,N,COMM,INFQ)

Chapter 5: Fast Fourier Transforms (FFTs) 33

5.2.3 2D FFT of two-dimensional arrays of data

The routines documented here compute the two-dimensional discrete Fourier transforms

(DFT) of a two-dimensional array of complex numbers in either single or double precision
arithmetic. The 2D DFT is computed using a highly-efficient FFT algorithm.
There are two sets of interfaces available: simple drivers and expert drivers. The simple
drivers perform in-place transforms on data held contiguously in memory using a fixed
scaling factor; these are simpler to use and are sufficient for many problems. The expert
drivers offer greater flexibility by including a number of additional arguments. These allow
you to control: the scaling factor applied; whether the result should be output to a separate
array; the increments used in storing successive elements in each dimension (for both input
and output); and the facility to not perform a final transposition. This final facility is useful
for those cases where a forward and backward transform are to be applied with some data
manipulations in between; here two whole transpositions can be saved.

ZFFT2D Routine Documentation

ZFFT2D (MODE,M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER MODE [Input]
The value of MODE on input determines the direction of transform to be per-
formed by ZFFT2D.

On input:
MODE=-1 : forward 2D transform is performed.
MODE=1 : backward (reverse) 2D transform is performed.

INTEGER M [Input]
On input: M is the number of rows in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the first dimension of X.

INTEGER N [Input]
On input: N is the number of columns in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the second dimension of X.

COMPLEX*16 X(M*N) [Input/Output]
On input: X contains the M by N complex 2D array to be transformed. Ele-
ment 47 is stored in location ¢ + (j — 1) * M of X.
On output: X contains the transformed sequence.

COMPLEX*16 COMM(M*N+3*(M+N)) [Input/Output]

COMM is a communication array used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

Chapter 5: Fast Fourier Transforms (FFTs)

34

-~
CALL ZFFT2D(-1,M,N,X,COMM, INFO)
DO 20 J =1, N

DO 10 I = 1, MIN(J-1,M)

X(I,J) = 0.5D0*(X(I,J) + X(J,I))
X(J,I) = DCONJG(X(I,J))
10 CONTINUE

20 CONTINUE
CALL ZFFT2D(1,M,N,X,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 35

CFFT2D Routine Documentation

CFFT2D (MODE,M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER MODE [Input]
The value of MODE on input determines the direction of transform to be per-
formed by ZFFT2D.

On input:
MODE=-1 : forward 2D transform is performed.
MODE=1 : backward (reverse) 2D transform is performed.

INTEGER M [Input]
On input: M is the number of rows in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the first dimension of X.

INTEGER N [Input]
On input: N is the number of columns in the 2D array of data to be transformed.
If X is declared as a 2D array then M is the second dimension of X.

COMPLEX X (M*N) [Input/Output]
On input: X contains the M by N complex 2D array to be transformed. Ele-
ment ij is stored in location i 4+ (j — 1) * M of X.
On output: X contains the transformed sequence.

COMPLEX COMM (M*N+5*(M+N)) [Input/Output]

COMM is a communication array used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-

CALL CFFT2D(-1,M,N,X,COMM, INFO)
DO 20 J =1, N
DO 10 I = 1, MIN(J-1,M)
X(I,J) = 0.5D0*(X(I,J) + X(J,I))
X(J,I) = CONJG(X(I,J))
10 CONTINUE
20 CONTINUE
CALL CFFT2D(1,M,N,X,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 36

ZFFT2DX Routine Documentation

ZFFT2DX (MODE,SCALE,LTRANS,INPL,M,N,X,INCX1, [SUBROUTINE]
INCX2,Y,INCY1,INCY2,COMM,INFO)
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by ZFFT2DX.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to ZFFT2DX.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to ZFFT2DX.

MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

DOUBLE PRECISION SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequences
LOGICAL LTRANS [Input]

On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data consistent with the values for arguments
INPL, INCX1, INCX2, INCY1 and INCY2. If LTRANS is .FALSE. then the
final transposition is not performed explicitly; the storage format on output is
determined by whether the output data is stored contiguously or not — please
see the output specifications for X and Y for details.

LOGICAL INPL [Input]
On input: if INPL is . TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

INTEGER M [Input]
On input: M is the first dimension of the 2D transform.

INTEGER N [Input]
On input: N is the second dimension of the 2D transform.

COMPLEX*16 X (1+(M-1)*INCX1+(N-1)*INCX2) [Input/Output]

On input: X contains the M by N complex 2D data array to be transformed;
the (ij)th element is stored in X(1+(i-1)*INCX1+(j-1)*INCX2).

On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; in locations X((i-
1)*N+j) when LTRANS=.FALSE., INCX1=1 and INCX2=M; and otherwise
in the same locations as on input. If INPL is .FALSE. X remains unchanged.

INTEGER INCX1 [Input]
On input: INCX1 is the increment used to store, in X, successive elements in
the first dimension (INCX1=1 for contiguous data).

Constraint: INCX1 > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 37

INTEGER INCX2 [Input]
On input: INCX2 is the increment used to store, in X, successive elements in
the second dimension (INCX2=M for contiguous data).

Constraint: INCX2 > 0.

COMPLEX*16 Y (1+(M-1)*INCY1+(N-1)*INCY?2) [Output]
On output: if INPL is .FALSE. then Y contains the transformed data.
If LTRANS=.TRUE. then the (ij)th data element is stored in Y(1+(i-
1)*INCY1+(j-1)*INCY2); if LTRANS=.FALSE., INCYI=1 and INCY2=M
then the (ij)th data element is stored in Y((i-1)*N+j); and otherwise the (ij)th
element is stored in Y(1+(i-1)*INCY1+(j-1)*INCY2). If INPL is .TRUE. then
Y is not referenced.

INTEGER INCY1 [Input]
On input: INCY1 is the increment used to store successive elements in the
first dimension in Y (INCY1=1 for contiguous data). If INPL is .TRUE. then
INCY1 is not referenced.

Constraint: INCY1 > 0.

INTEGER INCY?2 [Input]
On input: INCY?2 is the increment used to store successive elements in the
second dimension in Y (INCY2=M for contiguous data). If INPL is .TRUE.
then INCY2 is not referenced.

Constraint: INCY2 > 0.

COMPLEX*16 COMM (M*N+3*M+3*N+200) [Input/Output]
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same dimensions M and N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

Chapter 5: Fast Fourier Transforms (FFTs) 38

QaQaaaQ

10
20

Forward 2D FFT is performed unscaled, without final transpose
and out-of-place on data stored in array X and output to Y.
Manipulations are stored in vector Y which is then transformed
back, with scaling, into the first M rows of X.

COMPLEX %16 X(LDX,N), Y(MxN)
SCALE = 1.0DO
INPL = .FALSE.
LTRANS = .FALSE.
CALL ZFFT2DX(0,SCALE,LTRANS,INPL,M,N,X,1,LDX,Y,1,M,COMM, INFO)
CALL ZFFT2DX(-1,SCALE,LTRANS,INPL,M,N,X,1,LDX,Y,1,M,COMM,INFO)
Iy = 1
DO 20 I = M
DO 10 J =1
Y(IY) =
Iy = Ty
CONTINUE
CONTINUE
SCALE = 1.0DO/DBLE (M#*N)
CALL ZFFT2DX(1,SCALE,LTRANS,INPL,N,M,Y,1,N,X,1,LDX,COMM, INFO)

, N
0.5D0*Y (IY)*EXP(0.001D0O* (I+J-2))
+1

J

Chapter 5: Fast Fourier Transforms (FFTs) 39

CFFT2DX Routine Documentation

CFFT2DX (MODE,SCALE,LTRANS,INPL,M,N,X,INCX1, [SUBROUTINE]
INCX2,Y,INCY1,INCY2,COMM,INFO)
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by CFFT2DX.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=—1 or 1.

MODE=-1 : a forward transform is performed. Initializations are as-
sumed to have been performed by a prior call to CFFT2DX.

MODE=1 : a backward (reverse) transform is performed. Initializations
are assumed to have been performed by a prior call to CFFT2DX.

MODE=-2 : initializations and a forward transform are performed.

MODE=2 : initializations and a backward transform are performed.

REAL SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequences
LOGICAL LTRANS [Input]

On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data consistent with the values for arguments
INPL, INCX1, INCX2, INCY1 and INCY2. If LTRANS is .FALSE. then the
final transposition is not performed explicitly; the storage format on output is
determined by whether the output data is stored contiguously or not — please
see the output specifications for X and Y for details.

LOGICAL INPL [Input]
On input: if INPL is . TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

INTEGER M [Input]
On input: M is the first dimension of the 2D transform.

INTEGER N [Input]
On input: N is the second dimension of the 2D transform.

COMPLEX X (1+(M-1)*INCX1+(N-1)*INCX2) [Input/Output]

On input: X contains the M by N complex 2D data array to be transformed;
the (ij)th element is stored in X(1+(i-1)*INCX1+(j-1)*INCX2).

On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; in locations X((i-
1)*N+j) when LTRANS=.FALSE., INCX1=1 and INCX2=M; and otherwise
in the same locations as on input. If INPL is .FALSE. X remains unchanged.

INTEGER INCX1 [Input]
On input: INCX1 is the increment used to store, in X, successive elements in
the first dimension (INCX1=1 for contiguous data).

Constraint: INCX1 > 0.

Chapter 5: Fast Fourier Transforms (FFTs) 40

INTEGER INCX2 [Input]
On input: INCX2 is the increment used to store, in X, successive elements in
the second dimension (INCX2=M for contiguous data).

Constraint: INCX2 > 0.

COMPLEX Y (1+(M-1)*INCY1+(N-1)*INCY?2) [Output]
On output: if INPL is .FALSE. then Y contains the transformed data.
If LTRANS=.TRUE. then the (ij)th data element is stored in Y(1+(i-
1)*INCY1+(j-1)*INCY2); if LTRANS=.FALSE., INCYI=1 and INCY2=M
then the (ij)th data element is stored in Y((i-1)*N+j); and otherwise the (ij)th
element is stored in Y(1+(i-1)*INCY1+(j-1)*INCY2). If INPL is .TRUE. then
Y is not referenced.

INTEGER INCY1 [Input]
On input: INCY1 is the increment used to store successive elements in the
first dimension in Y (INCY1=1 for contiguous data). If INPL is .TRUE. then
INCY1 is not referenced.

Constraint: INCY1 > 0.

INTEGER INCY?2 [Input]
On input: INCY?2 is the increment used to store successive elements in the
second dimension in Y (INCY2=M for contiguous data). If INPL is .TRUE.
then INCY2 is not referenced.

Constraint: INCY2 > 0.

COMPLEX COMM(M*N+5*M+5*N+200) [Input/Output]
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same dimensions M and N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

Chapter 5: Fast Fourier Transforms (FFTs) 41

QaQaaaQ

10
20

Forward 2D FFT is performed unscaled, without final transpose
and out-of-place on data stored in array X and output to Y.
Manipulations are stored in vector Y which is then transformed
back, with scaling, into the first M rows of X.

COMPLEX X(LDX,N), Y(MxN)
SCALE = 1.0
INPL = .FALSE.
LTRANS = .FALSE.
CALL CFFT2DX(0,SCALE,LTRANS,INPL,M,N,X,1,LDX,Y,1,M,COMM, INFO)
CALL CFFT2DX(-1,SCALE,LTRANS,INPL,M,N,X,1,LDX,Y,1,M,COMM,INFO)
Iy = 1
DO 20 I = M
DO 10 J =1
Y(IY) =
Iy = Ty
CONTINUE
CONTINUE
SCALE = 1.0/REAL (Mx*N)
CALL CFFT2DX(1,SCALE,LTRANS,INPL,N,M,Y,1,N,X,1,LDX,COMM,INFO)

, N
0.5*%Y(IY)*EXP(-0.001*REAL(I+J-2))
+1

J

Chapter 5: Fast Fourier Transforms (FFTs) 42

5.2.4 3D FFT of three-dimensional arrays of data

The routines documented here compute the three-dimensional discrete Fourier trans-
forms (DFT) of a three-dimensional array of complex numbers in either single or double
precision arithmetic. The 3D DFT is computed using a highly-efficient FFT algorithm.

ZFFT3D Routine Documentation

ZFFT3D (MODE,L,M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER MODE [Input]
The value of MODE on input determines the direction of transform to be per-
formed by ZFFT3D.

On input:

MODE=-1 : forward 3D transform is performed.
MODE=1 : backward (reverse) 3D transform is performed.

INTEGER L [Input]
On input: the length of the first dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then L is the first dimension of X.

INTEGER M [Input]
On input: the length of the second dimension of the 3D array of data to be

transformed. If X is declared as a 3D array then M is the second dimension of
X.

INTEGER N [Input]
On input: the length of the third dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then N is the third dimension of
X.

COMPLEX*16 X(L*M*N) [Input/Output]
On input: X contains the L by M by N complex 3D array to be transformed.
Element ijk is stored in location i + (j — 1) « L+ (k — 1) « L* M of X.

On output: X contains the transformed sequence.

COMPLEX*16 COMM (L*M*N+3*(L+M+N)) [Input/Output]

COMM is a communication array used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs)

Example:
-~
CALL ZFFT3D(-1,L,M,N,X,COMM,INFO)
DO 30 K =1, N
DO 20 J =1, M
DO 10 I =1, L
X(I,J) = X(I,J)*EXP(-0.001DO*DBLE(I+J+K))
10 CONTINUE
20 CONTINUE
30 CONTINUE
CALL ZFFT3D(1,L,M,N,X,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 44

CFFT3D Routine Documentation

CFFT3D (MODE,L,M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER MODE [Input]
The value of MODE on input determines the direction of transform to be per-
formed by CFFT3D.

On input:
MODE=-1 : forward 3D transform is performed.
MODE=1 : backward (reverse) 3D transform is performed.

INTEGER L [Input]
On input: the length of the first dimension of the 3D array of data to be
transformed. If X is declared as a 3D array then L is the first dimension of X.

INTEGER M [Input]
On input: the length of the second dimension of the 3D array of data to be

transformed. If X is declared as a 3D array then M is the second dimension of
X.

INTEGER N [Input]
On input: the length of the third dimension of the 3D array of data to be

transformed. If X is declared as a 3D array then N is the third dimension of
X.

COMPLEX X(L*M*N) [Input/Output]
On input: X contains the L by M by N complex 3D array to be transformed.
Element ijk is stored in location ¢ + (j — 1) * L+ (k — 1) * L* M of X.

On output: X contains the transformed sequence.

COMPLEX COMM (L*M*N+5*(L+M+N)) [Input/Output]
COMM is a communication array used as temporary store.
INTEGER INFO [Output]

On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:
~
CALL CFFT3D(-1,L,M,N,X,COMM,INFO)
DO 30 K =1, N
DO 20 J =1, M
DO 10 I =1, L
X(I,J) = X(I,J)*EXP(-0.001DO*REAL(I+J+K))
10 CONTINUE
20 CONTINUE
30 CONTINUE
CALL CFFT3D(1,L,M,N,X,COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 45

ZFFT3DX Routine Documentation

ZFFT3DX (MODE,SCALE,LTRANS,INPL,L,M,N,X.Y, [SUBROUTINE]
COMM,INFO)
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by ZFFT3DX.
On input:

MODE=-1 : a forward transform is performed.
MODE=1 : a backward (reverse) transform is performed.

DOUBLE PRECISION SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequences
LOGICAL LTRANS [Input]

On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data using the same storage format as the input
data. If LTRANS is .FALSE. then the final transposition is not performed and
transformed data is stored, in X or Y, in transposed form.

LOGICAL INPL [Input]
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

INTEGER L [Input]
On input: L is the first dimension of the 3D transform.

INTEGER M [Input]
On input: M is the second dimension of the 3D transform.

INTEGER N [Input]
On input: N is the third dimension of the 3D transform.

COMPLEX*16 X(L*M*N) [Input/Output]

On input: X contains the L by M by N complex 3D data array to be trans-
formed; the (ijk)th element is stored in X(i+(j-1)*L+(k-1)*L*M).

On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; or in locations
X (k+(j-1)*N+(i-1)*N*M) when LTRANS=.FALSE. If INPL is .FALSE. X re-

mains unchanged.

COMPLEX*16 Y (L*M*N) [Output]
On output: if INPL is .FALSE. then Y contains the three-dimensional trans-
formed data. If LTRANS=.TRUE. then the (ijk)th data element is stored in
Y (i+(j-1)*L+(k-1)*L*M); otherwise, the (ijk)th data element is stored in Y (k+(j-
1)*N+(i-1)*N*M). If INPL is .TRUE. then Y is not referenced.

COMPLEX*16 COMM(L*M*N+5*(L+M+IN)+200) [Input/Output]
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same sequence dimensions. The
remainder is used as temporary store.

Chapter 5: Fast Fourier Transforms (FFTs) 46

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-~

C Forward 3D FFT is performed unscaled, without final transpose

C and out-of-place on data stored in array X and output to Y.

C Manipulations are stored in vector Y which is then transformed

C back, with scaling, into the first M rows of X.

C

10
20

COMPLEX =16 X(L*M*N), Y(L*Mx*N)

SCALE = 1.0DO

INPL = .FALSE.

LTRANS = .FALSE.

CALL ZFFT3DX(-1,SCALE,LTRANS,INPL,L,M,N,X,Y,COMM, INFO)

IY = 1

DO 20 I =1, L
DO 40 J =1

, M
DO 10 K =1, N
Y(IY) = Y(IY)*EXP(-0.001DO*DBLE(I+J+K-3))
IY = IY + 1
CONTINUE
CONTINUE

SCALE = 1.0DO/DBLE (L*M*N)
CALL ZFFT3DX(1,SCALE,LTRANS,INPL,N,M,L,Y,X,COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 47

CFFT3DX Routine Documentation

CFFT3DX (MODE,SCALE,LTRANS,INPL,L,M,N,X,Y, [SUBROUTINE]
COMM,INFO)
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by CFFT3DX.
On input:

MODE=-1 : a forward transform is performed.
MODE=1 : a backward (reverse) transform is performed.

REAL SCALE [Input]
On input: SCALE is the scaling factor to apply to the output sequences
LOGICAL LTRANS [Input]

On input: if LTRANS is .TRUE. then a normal final transposition is performed
internally to return transformed data using the same storage format as the input
data. If LTRANS is .FALSE. then the final transposition is not performed and
transformed data is stored, in X or Y, in transposed form.

LOGICAL INPL [Input]
On input: if INPL is .TRUE. then X is overwritten by the output sequences;
otherwise the output sequences are returned in Y.

INTEGER L [Input]
On input: L is the first dimension of the 3D transform.

INTEGER M [Input]
On input: M is the second dimension of the 3D transform.

INTEGER N [Input]
On input: N is the third dimension of the 3D transform.

COMPLEX X (L*M*N) [Input/Output]

On input: X contains the L by M by N complex 3D data array to be trans-
formed; the (ijk)th element is stored in X(i+(j-1)*L+(k-1)*L*M).

On output: if INPL is .TRUE. then X contains the transformed data, either
in the same locations as on input when LTRANS=.TRUE.; or in locations
X (k+(j-1)*N+(i-1)*N*M) when LTRANS=.FALSE. If INPL is .FALSE. X re-

mains unchanged.

COMPLEX Y (L*M*N) [Output]
On output: if INPL is .FALSE. then Y contains the three-dimensional trans-
formed data. If LTRANS=.TRUE. then the (ijk)th data element is stored in
Y (i+(j-1)*L+(k-1)*L*M); otherwise, the (ijk)th data element is stored in Y (k+(j-
1)*N+(k-1)*N*M). If INPL is .TRUE. then Y is not referenced.

COMPLEX COMM (L*M*N+5*(L+M+N)+200) [Input/Output]
COMM is a communication array. Some portions of the array are used to store
initializations for subsequent calls with the same sequence dimensions. The
remainder is used as temporary store.

Chapter 5: Fast Fourier Transforms (FFTs) 48

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-~

C Forward 3D FFT is performed unscaled, without final transpose

C and out-of-place on data stored in array X and output to Y.

C Manipulations are stored in vector Y which is then transformed

C back, with scaling, into the first M rows of X.

C

10
20

SCALE = 1.0

INPL = .FALSE.

LTRANS = .FALSE.

CALL CFFT3DX(-1,SCALE,LTRANS,INPL,L,M,N,X,Y,COMM,INFO)

Iy = 1

DO 20I =1, L
DO 40 J =1

, M
DO 10 K =1, N
Y(IY) = Y(IY)*EXP(-0.001+REAL(I+J+K-3))
Iy = IY + 1
CONTINUE
CONTINUE

SCALE = 1.0/REAL (L*Mx*N)
CALL CFFT3DX(1,SCALE,LTRANS,INPL,N,M,L,Y,X,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 49

5.3 FFTs on real and Hermitian data sequences

The routines documented here compute discrete Fourier transforms (DFTs) of sequences
of real numbers or of Hermitian sequences in either single or double precision arithmetic.
The DFTs are computed using a highly-efficient FFT algorithm. Hermitian sequences are
represented in a condensed form that is described in Section 5.1 [Introduction to FFTs],
page 17. The DFT of a real sequence results in a Hermitian sequence; the DFT of a
Hermitian sequence is a real sequence.

Please note that prior to Release 2.0 of ACML the routine ZDFFT/CSFFT and
ZDFFTM/CSFETM returned results that were scaled by a factor 0.5 compared with the
currently returned results.

5.3.1 FFT of single sequences of real data

DZFFT Routine Documentation

DZFFT (MODE,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by DZFFT.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE= 1.

MODE=1 : a real transform is performed. Initializations are assumed to
have been performed by a prior call to DZFFT.

MODE=2 : initializations and a real transform are performed.

INTEGER N [Input]
On input: N is the length of the real sequence X

DOUBLE PRECISION X(IN) [Input/Output]
On input: X contains the real sequence of length N to be transformed.
On output: X contains the transformed Hermitian sequence.

DOUBLE PRECISION COMM/(3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Chapter 5: Fast Fourier Transforms (FFTs)

Example:

50

10

CALL DZFFT(O,N,X,COMM, INFO)
CALL DZFFT(1,N,X,COMM, INFO)
DO 10 I = N/2+2, N

X(I) = -X(D
CONTINUE
CALL ZDFFT(1,N,X,COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 51

SCFFT Routine Documentation

SCFFT (MODE,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by SCFFT.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE= 1.

MODE=1 : a real transform is performed. Initializations are assumed to
have been performed by a prior call to SCFFT.

MODE=2 : initializations and a real transform are performed.

INTEGER N [Input]
On input: N is the length of the real sequence X

REAL X(N) [Input/Output]
On input: X contains the real sequence of length N to be transformed.
On output: X contains the transformed Hermitian sequence.

REAL COMM (3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-

CALL SCFFT(O,N,X,COMM, INFO)
CALL SCFFT(1,N,X,COMM,INFO)
DO 10 I = N/2+2, N
X(I) = -X(D)
10 CONTINUE
CALL CSFFT(1,N,X,COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 52

5.3.2 FFT of multiple sequences of real data

DZFFTM Routine Documentation

DZFFTM (M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER M [Input]
On input: M is the number of sequences to be transformed.

INTEGER N [Input]
On input: N is the length of the real sequences in X

DOUBLE PRECISION X(IN*M) [Input/Output|
On input: X contains the M real sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j — 1) * N of X.

On output: X contains the transformed Hermitian sequences.

DOUBLE PRECISION COMM/(3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

(N

CALL DZFFTM(1,N,X,COMM,INFO)
CALL DZFFTM(2,N,X,COMM,INFO)
DO 10 I = 1, N
X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE
CALL ZDFFTM(1,N,X(1,3),COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 53

SCFFTM Routine Documentation

SCFFTM (M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER M [Input]
On input: M is the number of sequences to be transformed.

INTEGER N [Input]
On input: N is the length of the real sequences in X

REAL X(N*M) [Input/Output]
On input: X contains the M real sequences of length N to be transformed.
Element 7 of sequence j is stored in location i + (j — 1) * N of X.

On output: X contains the transformed Hermitian sequences.

REAL COMM (3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-

CALL SCFFTM(1,N,X,COMM,INFO)
CALL SCFFTM(2,N,X,COMM, INFO)
DO 10 I =1, N
X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE
CALL CSFFTM(1,N,X(1,3),COMM,INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 54

5.3.3 FFT of single Hermitian sequences

ZDFFT Routine Documentation

ZDFFT (MODE,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by ZDFFT.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=1.

MODE=1 : a forward transform is performed. Initializations are assumed
to have been performed by a prior call to ZDFFT.

MODE=2 : initializations and transform are performed.

INTEGER N [Input]
On input: N is length of the sequence in X

DOUBLE PRECISION X(N) [Input/Output]
On input: X contains the Hermitian sequence of length N to be transformed.
On output: X contains the transformed real sequence.

DOUBLE PRECISION COMM/(3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

()

CALL DZFFT(O,N,X,COMM, INFO)
CALL DZFFT(1,N,X,COMM, INFO)
DO 10 I = N/2+2, N
X(I) = -X(D)
10 CONTINUE
CALL ZDFFT(1,N,X,COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 55

CSFFT Routine Documentation

CSFFT (MODE,N,X,COMM,INFO) [SUBROUTINE]
INTEGER MODE [Input]
The value of MODE on input determines the operation performed by CSFFT.
On input:

MODE=0 : only initializations (specific to the value of N) are performed;
this is usually followed by calls to the same routine with MODE=1.

MODE=1 : a forward transform is performed. Initializations are assumed
to have been performed by a prior call to CSFFT.

MODE=2 : initializations and transform are performed.

INTEGER N [Input]
On input: N is the length of the sequence in X

REAL X(N) [Input/Output]
On input: X contains the Hermitian sequence of length N to be transformed.
On output: X contains the transformed real sequence.

REAL COMM (3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-

CALL SCFFT(O,N,X,COMM, INFO)
CALL SCFFT(1,N,X,COMM,INFO)
DO 10 I = N/2+2, N
X(I) = -X(D)
10 CONTINUE
CALL CSFFT(1,N,X,COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 56

5.3.4 FFT of multiple Hermitian sequences

ZDFFTM Routine Documentation

ZDFFTM (M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER M [Input]
On input: M is the number of sequences to be transformed.

INTEGER N [Input]
On input: N is the length of the sequences in X

DOUBLE PRECISION X(IN*M) [Input/Output]
On input: X contains the M Hermitian sequences of length N to be transformed.
Element i of sequence j is stored in location i + (j — 1) * N of X.

On output: X contains the transformed real sequences.

DOUBLE PRECISION COMM/(3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

(N

CALL DZFFTM(1,N,X,COMM,INFO)
CALL DZFFTM(2,N,X,COMM,INFO)
DO 10 I = 1, N
X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE
CALL ZDFFTM(1,N,X(1,3),COMM, INFO)

Chapter 5: Fast Fourier Transforms (FFTs) 57

CSFFTM Routine Documentation

CSFFTM (M,N,X,COMM,INFO) [SUBROUTINE]

INTEGER M [Input]
On input: M is the number of sequences to be transformed.

INTEGER N [Input]
On input: N is the length of the sequences in X

REAL X(N*M) [Input/Output]
On input: X contains the M Hermitian sequences of length N to be transformed.
Element 7 of sequence j is stored in location i + (j — 1) * N of X.

On output: X contains the transformed real sequences.

REAL COMM (3*N+100) [Input/Output]
COMM is a communication array. Some portions of the array are used to
store initializations for subsequent calls with the same sequence length N. The
remainder is used as temporary store.

INTEGER INFO [Output]
On output: INFO is an error indicator. On successful exit, INFO contains 0.
If INFO = —i on exit, the i-th argument had an illegal value.

Example:

-

CALL SCFFTM(1,N,X,COMM,INFO)
CALL SCFFTM(2,N,X,COMM, INFO)
DO 10 I =1, N
X(I,3) = X(I,1)*X(N-I+1,2)
10 CONTINUE
CALL CSFFTM(1,N,X(1,3),COMM,INFO)

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 58

6 ACML_MYV: Fast Math and Fast Vector Math
Library

6.1 Introduction to ACML_MYV

ACML_MV is a library which contains fast and/or vectorized versions of some familar
math library routines such as sin, cos and exp. The routines take advantage of the AMDG64
architecture for performance, and so are currently only available with 64-bit versions of
ACML. The routines in the library are very accurate over the range of acceptable input
arguments.

Some of the performance is gained by sacrificing error handling or the acceptance of certain
arguments. It is therefore the responsibility of the caller of these routines to ensure that
their arguments are suitable. Furthermore, some of the routines are not callable from high-
level languages at all, but must be called via assembly language; see the documentation
of individual routines for details. Hence, these routines are intended to be utilized by
knowledgeable users only.

6.1.1 Terminology

The individual documentation for a routine states what outputs will be returned for special
arguments, and also gives an indication of performance of the routine. In general, special
case arguments for any routine will cause a return value in accordance with the C99 language
standard [6].

Special case arguments include NaNs and infinities, as defined by the IEEE arithmetic
standard [7]. In these documents, NaN means Not a Number, QNaN means Quiet NaN,
and SNalN means Signalling NaN.

A denormal number is a number which is very tiny (close to the machine arithmetic under-
flow threshold) and is stored to less precision than a normal number. Due to their special
nature, operations on such numbers are often very slow. While such numbers might not
necessarily be regarded as special case arguments, for the sake of performance some of the
ACML_MYV routines have been designed not to handle them. This has been noted in the
documentation for each ACML_MYV routine.

Performance of a routine is given in machine cycles, and is thus independent of processor
speed.

Accuracy of a routine is quoted in ulps, where ulp stands for Unit in the Last Place. Since
floating-point numbers on a computer are limited precision approximations of mathematical
numbers, not all real numbers can be represented by machine numbers, and the machine
number must in general be rounded to available precision. An ulp is the distance between
the two machine numbers that bracket a real number.

In this document, the ulp is used as a measure of the error in a returned result when
compared with the mathematically exact expected result. Because of the finite nature of
machine arithmetic, a routine can never in general achieve accuracy of better than 0.5 ulps,
and an accuracy of less than 1 ulp is good.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 59

6.1.2 Weak Aliases

Some of the functions in ACML_MYV include a weak alias to an equivalent function in libm.
For example, the fastcos function includes a weak alias to cos. If ACML_MYV is included in
the link order before libm, then all calls to the aliased libm function name (e.g. cos) will
use the equivalent ACML_MYV routine (e.g. fastcos). If ACML_MYV is included in the link
order after libm, then all calls to libm functions will use the libm versions.

ACML_MV routines can always be accessed using their ACML_MV names (e.g. fastcos),
regardless of link order.

6.1.3 Defined Types

The following types are used to describe the functions contained in this chapter:

__ml128d a pair of double precision values;
_-ml128 four single precision values.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 60

6.2 Fast Basic Math Functions

This section documents the interfaces to a set of basic mathematical functions.

fastcos: fast double precision Cosine

double fastcos (double x)

Weak alias: cos
C Prototype:
double fastcos (double x);
Inputs:
double x - the double precision input value.
Outputs:
Cosine of x.
Fortran Function Interface:
DOUBLE PRECISION FASTCOS(X)
Inputs:
DOUBLE PRECISION X - the double precision input value.
Return Value:
Cosine of X.
Notes:

fastcos computes the Cosine function of its argument x.

This is a relaxed version of cos, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 2 ulp over most of the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
400 QNaN
—0 QNaN
Performance:

88 cycles for most valid inputs < 5eb.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 61

fastsin: fast double precision Sine

double fastsin (double x)

Weak alias: sin
C Prototype:
double fastsin (double x);
Inputs:
double x - the double precision input value.
Outputs:
Sine of x.
Fortran Function Interface:
DOUBLE PRECISION FASTSIN(X)
Inputs:
DOUBLE PRECISION X - the double precision input value.
Return Value:
Sine of X.
Notes:

fastsin computes the Sine function of its argument x.

This is a relaxed version of sin, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QQNalN
SNaN same NaN converted to QNaN
400 QNaN
—0 QNaN
Performance:

88 cycles for most valid inputs < 5e5.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 62

fastsincos: fast double precision Sine and Cosine

void fastsincos (double x, double s, double c)

Weak alias: sincos
C Prototype:
void fastsincos (double x, double s, double c¢);
Inputs:
double x - the double precision input value.
Outputs:
double s - Sine of x.
double ¢ - Cosine of x.
Fortran Subroutine Interface:
SUBROUTINE FASTCOS(X,S,C)
Inputs:
DOUBLE PRECISION X - the double precision input value.
Outputs:
DOUBLE PRECISION S - Sine of X.
DOUBLE PRECISION C - Cosine of X.
Notes:

fastsincos computes the Sine and Cosine functions of its argument x.

This function can provide a significant performance advantage for applications
that require both the sine and cosine of an angle, such as axis and matrix rotation.
This is a relaxed version of sincos, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
400 QNaN
—00 QNaN
Performance:

99 cycles for most valid inputs < 5eb.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 63

fastlog: fast double precision natural logarithm function

double fastlog (double x)

Weak alias: log
C Prototype:
double fastlog (double x);
Inputs:
double x - the double precision input value.
Outputs:
The natural logarithm (base e) of x.
Fortran Function Interface:
DOUBLE PRECISION FASTLOG(X)
Inputs:
DOUBLE PRECISION X - the double precision input value.
Return Value:
The natural logarithm (base e) of X.
Notes:

fastlog computes the double precision natural logarithm of its argument x.

This is a relaxed version of log, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
+0 —00
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNalN
+00 +00
—00 QNaN
Performance:

97 cycles for most valid inputs.
86 cycles for .97 < x < 1.03

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 64

fastlogf: fast single precision natural logarithm function

float fastlogf (float x)

Weak alias: logf
C Prototype:
float fastlogf (float x);
Inputs:
float x - the single precision input value.
Outputs:
The natural logarithm (base e) of x.
Fortran Function Interface:
REAL FASTLOGF (X)
Inputs:
REAL X - the single precision input value.
Return Value:
The natural logarithm (base e) of X.
Notes:

fastlogf computes the single precision natural logarithm of its argument x.

This is a relaxed version of logf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
+0 —0o0
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNalN
+00 +00
—00 QNaN
Performance:

94 cycles for most valid inputs.
85 cycles for .97 < x < 1.03

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 65

fastlog10: fast double precision base-10 logarithm function

double fastlogl0 (double x)

Weak alias: log10
C Prototype:
double fastlogl0 (double x);
Inputs:
double x - the double precision input value.
Outputs:
The base-10 logarithm of x.
Fortran Function Interface:
DOUBLE PRECISION FASTLOG10(X)
Inputs:
DOUBLE PRECISION X - the double precision input value.
Return Value:
The base-10 logarithm of X.
Notes:

fastlogl0 computes the double precision base-10 logarithm of its argument x.

This is a relaxed version of logl0, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
+0 —0o0
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNalN
+00 +00
—00 QNaN
Performance:

112 cycles for most valid inputs.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 66

fastpow: fast double precision power function

double fastpow (double x, double y)

Weak alias: pow

C Prototype:

double fastpow (double x, double y);

Inputs:

double x - the double precision base input value.

double y - the double precision exponent input value.

Outputs:

x raised to the power y.

Fortran Function Interface:

DOUBLE PRECISION FASTPOW(X,Y)

Inputs:

DOUBLE PRECISION X - the base value.
DOUBLE PRECISION Y - the exponent value.

Return Value:

X raised to the power Y.

Notes:

fastpow computes the x raised to the power y in double precision.

This is a relaxed version of pow, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs will produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input =
+0

+0

+0

+0

-1

+1

z (incl. Nan)
<0
[x|<1
[x|>1
[x[<1
[x[>1
—00

Input y

y < 0, odd integer

y < 0, not odd integer
y > 0, odd integer

y > 0, not odd integer
+00

y (incl. NaN)

+0

9, not integer

y < 0, odd integer

Output
+o0
+00
+0

+0

1

1

1
QNaN
“+00
+0

+0
+00
—0

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

+00
+00
NaN
x<>1

Performance:

y < 0, not odd integer
y > 0, odd integer

y > 0, not odd integer
y <0,

y >0,

Y nonzero,

NaN,

200 cycles for most valid inputs.

+0

“+0o0
+0
“+o00
NaN
NaN

67

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 68

fastpowf: fast single precision power function

float fastpowf (float x, float y)

Weak alias: powf

C Prototype:

float fastpowf (float x, float y);

Inputs:

float x - the single precision base input value.

float y - the single precision exponent input value.

Outputs:

x raised to the power y.

Fortran Function Interface:
REAL FASTPOWF(X,Y)

Inputs:

REAL X - the single precision base value.

REAL Y - the single precision exponent value.

Return Value:

X raised to the power Y.

Notes:

fastpowf computes the x raised to the power y in single precision.

This is a relaxed version of powf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs will produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 0.5 ulp over the valid input range.

Special case return values:

Input z
+0

+0

+0

+0

-1

+1

x (incl. Nan)
<0
[x|<1
[x|>1
[x[<1
[x[>1
—00

Input y

y < 0, odd integer

y < 0, not odd integer
y > 0, odd integer

y > 0, not odd integer
+00

y (incl. NaN)

+0

9, not integer

y < 0, odd integer

Output
+o0
+00
+0

+0

1

1

1
QNaN
“+00
+0

+0
+00
-0

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

+00
+00
NaN
x<>1

Performance:

y < 0, not odd integer
y > 0, odd integer

y > 0, not odd integer
y <0,

y >0,

Y nonzero,

NaN,

175 cycles for most valid inputs.

+0

“+0o0
+0
“+o00
NaN
NaN

69

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 70

fastexp: fast double precision exponential function

double fastexp (double x)

Weak alias: exp
C Prototype:
double fastexp (double x);
Inputs:
double x - the double precision input value.
Outputs:
e raised to the power x (exponential of x).
Fortran Function Interface:
DOUBLE PRECISION FASTEXP(X)
Inputs:
DOUBLE PRECISION X - the double precision input value.
Return Value:
e raised to the power X (exponential of X).
Notes:

fastexp computes the double precision exponential function of the input argument
X.

This is a relaxed version of exp, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< —T08.5 0
> 709.8 400
Performance:

75 cycles for most valid inputs.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 71

fastexpf: fast single precision exponential function

float fastexpf (float x)

Weak alias: expf
C Prototype:
float fastexpf (float x);
Inputs:
float x - the single precision input value.
Outputs:
e raised to the power x (exponential of x).
Fortran Function Interface:
REAL FASTEXPF(X)
Inputs:
REAL X - the single precision input value.
Return Value:
e raised to the power X (exponential of X).
Notes:

fastexpf computes the single precision exponential function of the input argument
X.

This is a relaxed version of expf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Error inputs produce C99 return values. The routine is
accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< —87.5 0
> 88 400
Performance:

75 cycles for most valid inputs.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 72

6.3 Fast Vector Math Functions

This section documents the interfaces to a set of vector mathematical functions.

vrd2_cos: Two-valued double precision Cosine

__m128d __vrd2_cos (__m1284 x)

C Prototype:
~-m128d __vrd2_cos(--m128d x);
Inputs:
_-m128d x - the double precision input value pair.
Outputs:
__.m128d y - the double precision Cosine result pair, returned in xmmo0.
Notes:

__vrd2_cos computes the Cosine function of two input arguments.

This routine accepts a pair of double precision input values passed as a __m128d
value. The result is the double precision Cosine of both values, returned as a
_.m128d value. This is a relaxed version of cos, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNalN
SNaN same NaN converted to QNalN
400 QNaN
—00 QNaN
Performance:

120 cycles for most valid inputs < 5e5 (60 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 73

vrd4_cos: Four-valued double precision Cosine

__m128d,__m128d __vrd4_cos (__m128d x1,__m128d x2)

) ——

C Prototype:
--m128d __vrd2_cos(--m128d x);

Note that this function uses a non-standard programming interface. The two
_-m128d inputs, which contain four double precision values, are passed by the
AMDG64 C ABI in registers xmm0, and xmml. The corresponding results are
returned in xmm0O and xmml. The use of xmml to return a __m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.

Inputs:
__m128d x1 - the first double precision input value pair.
__.m128d x2 - the second double precision input value pair.
Outputs:
_-m128d y1 - the first double precision Cosine result pair, returned in xmm0.
__.m128d y2 - second double precision Cosine result pair, returned in xmm1.
Notes:

__vrd4_cos computes the Cosine function of four input arguments.

This routine accepts four double precision input values passed as two __m128d
values. The result is the double precision Cosine of the four values, returned as
two __m128d values. This is a relaxed version of cos, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range. This routine
may return slightly worse than 1 ulp for very large values between 4eb and 5e5.

Special case return values:

Input Output
QNaN same QNalN
SNaN same NaN converted to QNalN
400 QNaN
—00 QNaN
Performance:

172 cycles for most valid inputs < 5e5 (43 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 74

vrda_cos: Array double precision Cosine

void vrda_cos (int n, double *x, double *y)

C Prototype:

void vrda_cos (int n, double *x, double *y)

Inputs:
int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:

Cosine for each x value, filled into the y array.
Fortran Subroutine Interface:
SUBROUTINE VRDA_COS(N,X,Y)
Inputs:
INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.
Outputs:
DOUBLE PRECISION Y(N) - array of Cosines of input values.
Notes:

vrda_cos computes the Cosine function for each element of an array of input ar-
guments.

This routine accepts an array of double precision input values, computes cos(x)
for each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of cos, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
~+00 QNaN
-0 QNaN
Performance:

172 cycles for most valid inputs < 5e5 (43 cycles per value), n = 24.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 75

vrd2_sin: Two-valued double precision Sine

__m128d __vrd2_sin (__m128d x)

C Prototype:
--m128d __vrd2_sin(--m128d x);
Inputs:
_-m128d x - the double precision input value pair.
Outputs:
_-m128d y - the double precision Sine result pair, returned in xmm0.
Notes:

__vrd2_sin computes the Sine function of two input arguments.

This routine accepts a pair of double precision input values passed as a __m128d
value. The result is the double precision Sine of both values, returned as a -_m128d
value. This is a relaxed version of sin, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
400 QNaN
—00 QNaN
Performance:

120 cycles for most valid inputs < 5e5 (60 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 76

vrd4_sin: Four-valued double precision Sine

__m128d,__m128d __vrd4_sin (__m128d x1,__m128d x2)

) ——

C Prototype:
--m128d __vrd2_sin(--m128d x);

Note that this function uses a non-standard programming interface. The two
_-m128d inputs, which contain four double precision values, are passed by the
AMDG64 C ABI in registers xmm0, and xmml. The corresponding results are
returned in xmm0O and xmml. The use of xmml to return a __m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.

Inputs:
__m128d x1 - the first double precision input value pair.
__.m128d x2 - the second double precision input value pair.
Outputs:
_-m128d y1 - the first double precision Sine result pair, returned in xmm0.
__.m128d y2 - second double precision Sine result pair, returned in xmml.
Notes:

_-vrd4_sin computes the Sine function of four input arguments.

This routine accepts four double precision input values passed as two __m128d
values. The result is the double precision Sine of the four values, returned as two
__.m128d values. This is a relaxed version of sin, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range. This routine
may return slightly worse than 1 ulp for very large values between 4eb and 5e5.

Special case return values:

Input Output
QNaN same QNalN
SNaN same NaN converted to QNaN
400 QNaN
—00 QNaN
Performance:

172 cycles for most valid inputs < 5e5 (43 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 7

vrda_sin: Array double precision Sine

void vrda_sin (int n, double *x, double *y)

C Prototype:

void vrda_sin (int n, double *x, double *y)

Inputs:
int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:

Sine for each x value, filled into the y array.
Fortran Subroutine Interface:
SUBROUTINE VRDA_SIN(N,X,Y)
Inputs:
INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.
Outputs:

DOUBLE PRECISION Y(N) - array of Sines of input values.
Notes:

vrda_sin computes the Sine function for each element of an array of input argu-
ments.

This routine accepts an array of double precision input values, computes sin(x)
for each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of sin, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.
This routine may return slightly worse than 1 ulp for very large values between
4e5 and b5eb.

Special case return values:

Input Output
QNaN same QNalN
SNaN same NaN converted to QNaN
~+00 QNaN
—0 QNaN
Performance:

172 cycles for most valid inputs < 5e5 (43 cycles per value), n = 24.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 78

vrd2_sincos: Two-valued double precision Sine and Cosine

void __vrd2_sincos (__m128d x, __m128d* S, __m128d* C)

Y =

C Prototype:
void __vrd2_sincos(--m128d x, -_m128d* S, __m128d* C));
Inputs:
__m128d x - the double precision input value pair.
Outputs:
(Sine of x and Cosine of x.)
__m128d *S - Pointer to the double precision Sine result pair.
__m128d *C - Pointer to the double precision Cosine result pair.
Notes:

_-vrd2_sincos computes the Sine and Cosine functions of two input arguments.

This routine accepts a pair of double precision input values passed as a __m128d
value. The result is the double precision Sin and Cosine of both values, returned as
a __m128d value. This is a relaxed version of sincos, suitable for use with fastmath
compiler flags or application

not requiring full error handling. Denormal inputs may produce unpredictable
results. Special case inputs produce C99 return values. The routine is accurate to
better than 2 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNalN
SNaN same NaN converted to QNaN
400 QNaN
—00 QNaN
Performance:

154 cycles for most valid inputs < 5e5 (77 cycles per Sine and Cosine of a value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 79

vrda_sincos: Array double precision Sine and Cosine

void vrda_sincos (int n, double *x, double *ys, double *yc)

C Prototype:

void vrda_sincos (int n, double *x, double *ys, double *yc)

Inputs:
int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *ys - pointer to the array of sin output values.
double *yc - pointer to the array of cos output values.
Outputs:

Sine for each x value, filled into the ys array.
Cosine for each x value, filled into the yc array.
Fortran Subroutine Interface:
SUBROUTINE VRDA_SINCOS(N,X,YS,YC)
Inputs:
INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.
Outputs:
DOUBLE PRECISION YS(N) - array of Sines of input values.
DOUBLE PRECISION YC(N) - array of Cosines of input values.
Notes:

vrda_sincos computes the Sine and Cosine functions for each element of an array
of input arguments.

This routine accepts an array of double precision input values, computes sincos(x)
for each input value, and stores the results in the arrays pointed to by the ys and yc
pointer inputs. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of sincos, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 2 ulp over the valid
input range.

Special case return values:

Input Output

QNaN same QQNalN

SNaN same NaN converted to QNaN
400 QNaN

—00 QNaN

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 80

Performance:

180 cycles for most valid inputs < 5e5 (43 cycles per Sin and Cos of a value), n =
24.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 81

vrd2_log: Two-valued double precision natural logarithm

__m128d __vrd2_log (__m128d x)

C Prototype:
--m128d __vrd2_log(--m128d x);
Inputs:
_-m128d x - the double precision input value pair.
Outputs:
The natural (base e) logarithm of x.

__.m128d y - the double precision natural logarithm result pair, returned in
xmm0.

Notes:

__vrd2_log computes the natural logarithm for each of two input arguments.

This routine accepts a pair of double precision input values passed as a __m128d
value. The result is the double precision natural logarithm of both values, returned
as a __m128d value. This is a relaxed version of log, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
+0 —00
negative QNaN
QNaN same QNalN
SNaN same NaN converted to QNaN
+00 +00
—00 QNaN
Performance:

130 cycles for most valid inputs (65 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 82

vrd4_log: Four-valued double precision natural logarithm

_m128d

m128d __vrd4_log (__m128d x1, __m128d x2)

) —— -_) ——

Prototype:

~-m128d,-_.m128d __vrd4_log(--m128d x1, __m128d x2);

Note that this function uses a non-standard programming interface. The two
_-m128d inputs, which contain four double precision values, are passed by the
AMDG64 C ABI in registers xmm0, and xmml. The corresponding results are
returned in xmm0O and xmml. The use of xmml to return a __m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

__m128d x1 - the first double precision input value pair.

_-.m128d x2 - the second double precision input value pair.
Outputs:

The natural (base e) logarithm of x.

__m128d y1 - the first double precision natural logarithm result pair, returned

in xmmO.

_-m128d y2 - the second double precision natural logarithm result pair, re-

turned in xmml.

Notes:

__vrd4_log computes the natural logarithm for each of four input arguments.

This routine accepts four double precision input values passed as two __m128d
values. The result is the double precision natural logarithm of the four values,
returned as two __m128d values. This is a relaxed version of log, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
+0 —00
negative QNaN
QNaN same QQNalN
SNaN same NaN converted to QNaN
+00 400
—0 QNaN
Performance:

196 cycles for most valid inputs (49 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

vrda_log: Array double precision natural logarithm

void vrda_log (int n, double *x, double *y)

C Prototype:
void vrda_log (int n, double *x, double *y)

Inputs:
int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:

The natural (base e) logarithm of each x value, filled into the y array.
Fortran Subroutine Interface:
SUBROUTINE VRDA_LOG(N,X)Y)
Inputs:
INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.

Outputs:
DOUBLE PRECISION Y(N) - array of natural (base e) logarithms of input
values.
Notes:

vrda_log computes the double precision natural logarithm for each element of an
array of input arguments.

This routine accepts an array of double precision input values, computes the nat-
ural log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of log, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output

+0 —00

negative QNaN

QNaN same QQNalN

SNaN same NaN converted to QNaN
+00 +0o0

—00 QNaN

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

Performance:

51 cycles per value for valid inputs, n = 24.

84

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 85

vrs4_logf: Two-valued single precision natural logarithm

__m128 __vrs4_logf (__m128 x)

C Prototype:
--m128 __vrs4_logf(__m128 x);
Inputs:
_-m128 x - the single precision input values.
Outputs:
The natural (base e) logarithm of x.
_-ml128 y - the single precision natural logarithm results, returned in xmm0.
Notes:

__vrsd_logf computes the natural logarithm for each of four input arguments.

This routine accepts four single precision input values passed as a __m128 value.
The result is the single precision natural logarithm of all four values, returned as
a --m128 value. This is a relaxed version of logf, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
+0 —00
negative QNaN
QNaN same QNaN
SNaN same NaN converted to QNaN
+00 +00
—00 QNaN
Performance:

124 cycles for most valid inputs (31 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 86

vrs8_logf: Eight-valued single precision natural logarithm

__m128,__m128 __vrs8_logf (__m128 x1, __m128 x2)
Prototype:
~-m128,__m128 __vrs8_logf(__m128 x1, __m128 x2);
Note that this function uses a non-standard programming interface. The two
_-m128 inputs, which contain eight single precision values, are passed by the
AMDG64 C ABI in registers xmm0, and xmm1. The corresponding results are re-
turned in xmmO0 and xmm1. The use of xmm1 to return a __m128 is non-standard,
and this function can not be called directly from C. It can be called directly from
assembly language. It is intended for internal use by vectorizing compilers, that
may be able to take advantage of the non-standard calling interface.
Inputs:
__m128 x1 - the first single precision input value pair.
_-m128 x2 - the second single precision input value pair.
Outputs:
The natural (base e) logarithm of x.
_-m128 y1 - the first single precision natural logarithm result pair, returned
in xmmO.
__.m128 y2 - the second single precision natural logarithm result pair, returned
in xmm1.
Notes:

__vrs8_logf computes the natural logarithm for each of eight input arguments.

This routine accepts eight single precision input values passed as two __m128
values. The result is the single precision natural logarithm of the eight values,
returned as two __m128 values. This is a relaxed version of logf, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output
+0 —00
negative QNaN
QNaN same QQNalN
SNaN same NaN converted to QNaN
+00 400
—0 QNaN
Performance:

200 cycles for most valid inputs (25 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

vrsa_logf: Array single precision natural logarithm

void vrsa_logf (int n, float *x, float *y)

C Prototype:

void vrsa_logf (int n, float *x, float *y)

Inputs:
int n - the number of values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:

The natural (base e) logarithm of each x value, filled into the y array.
Fortran Subroutine Interface:

SUBROUTINE VRSA_LOGF(N,X)Y)
Inputs:

INTEGER N - the number of values in both the input and output arrays.

REAL X(N) - array of single precision input values.
Outputs:
REAL Y(N) - array of natural (base e) logarithms of input values.
Notes:

87

vrsa_logf computes the single precision natural logarithm for each element of an

array of input arguments.

This routine accepts an array of single precision input values, computes the natural
log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of logf, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid

input range.

Special case return values:

Input Output

+0 —00

negative QNaN

QNaN same QNaN

SNaN same NaN converted to QNaN
+00 +00

—00 QNaN

Performance:

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

26 cycles per value for valid inputs, n = 24.

88

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 89

vrd2_logl10: Two-valued double precision base-10 logarithm

__m128d __vrd2_logl0 (__m1284 x)

C Prototype:
--m128d __vrd2_logl0(--m128d x);
Inputs:
_-.m128d x - the double precision input value pair.
Outputs:
The base-10 logarithm of x.

__.m128d y - the double precision base-10 logarithm result pair, returned in
xmm0.

Notes:

__vrd2_logl10 computes the base-10 logarithm for each of two input arguments.

This routine accepts a pair of double precision input values passed as a __m128d
value. The result is the double precision base-10 logarithm of both values, returned
as a __m128d value. This is a relaxed version of logl0, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
+0 —00
negative QNaN
QNaN same QNalN
SNaN same NaN converted to QNaN
+00 +00
—00 QNaN
Performance:

142 cycles for most valid inputs (71 cycles per value), longer for input values very
close to 1.0.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

vrd4_logl10: Four-valued double precision base-10 logarithm

__m128d,__m128d __vrd4_logl0 (__m128d x1

) —— -) ==

m128d x2)

Prototype:

90

--m128d,-_m128d __vrd4_logl0(-_m128d x1, __m128d x2);

Note that this function uses a non-standard programming interface. The two
__m128d inputs, which contain four double precision values, are passed by the
AMD64 C ABI in registers xmm0, and xmml. The corresponding results are
returned in xmm0 and xmml. The use of xmml to return a __m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

_-m128d x1 - the first double precision input value pair.

_-.m128d x2 - the second double precision input value pair.
Outputs:

The base-10 logarithm of x.

__m128d y1 - the first double precision base-10 logarithm result pair, returned
in xmmO.

_-m128d y2 - the second double precision base-10 logarithm result pair, re-
turned in xmm1.

Notes:

__vrd4_logl10 computes the base-10 logarithm for each of four input arguments.

This routine accepts four double precision input values passed as two __m128d
values. The result is the double precision base-10 logarithm of the four values,
returned as two __m128d values. This is a relaxed version of logl0, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output

+0 —00

negative QNaN

QNaN same QNalN

SNaN same NaN converted to QNaN
+00 “+00

—00 QNaN

Performance:

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 91

205 cycles for most valid inputs (51 cycles per value), longer for input values very
close to 1.0.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

vrda_logl0: Array double precision base-10 logarithm

void vrda_loglO (int n, double *x, double *y)

C Prototype:
void vrda_logl0O (int n, double *x, double *y)

Inputs:
int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:

The base-10 logarithm of each x value, filled into the y array.
Fortran Subroutine Interface:
SUBROUTINE VRDA_LOG10(N,X,Y)
Inputs:
INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.
Outputs:
DOUBLE PRECISION Y(N) - array of base-10 logarithms of input values.
Notes:

vrda_logl0 computes the double precision base-10 logarithm for each element of
an array of input arguments.

This routine accepts an array of double precision input values, computes the base-
10 log for each input value, and stores the result in the array pointed to by the y
pointer input. It is the responsibility of the calling program to allocate/deallocate
enough storage for the output array. This is a relaxed version of log10, suitable for
use with fastmath compiler flags or applications not requiring full error handling.
Denormal inputs may produce unpredictable results. Special case inputs produce
C99 return values. The routine is accurate to better than 1 ulp over the valid
input range.

Special case return values:

Input Output

+0 —00

negative QNaN

QNaN same QNaN

SNaN same NaN converted to QNaN
+00 +00

—00 QNaN

Performance:

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 93

53 cycles per value for valid inputs, n = 24, longer for input values very close to
1.0.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 94

vrd2_exp: Two-valued double precision exponential function

__m128d __vrd2_exp (__m128d x)

C Prototype:
--m128d __vrd2_exp(--m128d x);
Inputs:
__m128d x - the double precision input value pair.
Outputs:
e raised to the power x (exponential of x).
__m128d y - the double precision exponent result pair, returned in xmmo0.
Notes:

__vrd2_exp computes the exponential function of two input arguments.

This routine accepts a pair of double precision input values passed as a __m128d
value. The result is the double precision exponent of both values, returned as a
_-m128d value. This is a relaxed version of exp, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< —T08.5 0
> 709.8 +00
Performance:

80 cycles for most valid inputs (40 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library

vrd4_exp: Four-valued double precision exponential function

__m128d,__m128d __vrd4_exp (__m128d x1, __m128d x2)

) =

Prototype:

95

--m128d,-_m128d __vrd4_exp(--m128d x1, __m128d x2);

Note that this function uses a non-standard programming interface. The two
_-m128d inputs, which contain four double precision values, are passed by the
AMDG64 C ABI in registers xmm0, and xmml. The corresponding results are
returned in xmm0O and xmml. The use of xmml to return a __m128d is non-
standard, and this function can not be called directly from C. It can be called
directly from assembly language. It is intended for internal use by vectorizing
compilers, that may be able to take advantage of the non-standard calling interface.
Inputs:

__m128d x1 - the first double precision input value pair.

__.m128d x2 - the second double precision input value pair.
Outputs:

_-m128d y1 - the first double precision exponent result pair, returned in xmm0.

__m128d y2 - the second double precision exponent result pair, returned in
xmml.

Notes:

__vrd4_exp computes the double precision exponential function of four input ar-
guments.

This routine accepts four double precision input values passed as two __m128d
values. The result is the double precision exponent of the four values, returned as
two __m128d values. This is a relaxed version of exp, suitable for use with fast-
math compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNaN
< —T08.5 0
> 709.8 +00
Performance:

132 cycles for most valid inputs (33 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 96

vrda_exp: Array double precision exponential function

void vrda_exp (int n, double *x, double *y)

C Prototype:
void vrda_exp (int n, double *x, double *y)

Inputs:
int n - the number of values in both the input and output arrays.
double *x - pointer to the array of input values.
double *y - pointer to the array of output values.

Outputs:

e raised to the power x (exponential of x) for each x value, filled into the y
array.
Fortran Subroutine Interface:
SUBROUTINE VRDA_EXP(N,X.Y)
Inputs:
INTEGER N - the number of values in both the input and output arrays.
DOUBLE PRECISION X(N) - array of double precision input values.
Outputs:
DOUBLE PRECISION Y(N) - array of exponentials (e raised to the power
x) of input values.
Notes:

vrda_exp computes the double precision exponential function for each element of
an array of input arguments.

This routine accepts an array of double precision input values, computes the e*
for each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of exp, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NalN converted to QNaN
< —708.5 0
> 709.8 +00
Performance:

33 cycles per value for valid inputs, n = 24.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 97

vrs4_expf: Four-valued single precision exponential function

__m128 __vrs4_expf (__m128 x)

C Prototype:
--m128 __vrsd_expf(-_m128 x);

Inputs:

_-m128 x - the four single precision input values.

Outputs:

e raised to the power x (exponential of x) for each input value x.
_-m128 y - the four single precision exponent results, returned in xmm0.

Notes:

__vrs4_expf computes the double precision exponential function of four input ar-
guments.

This routine accepts four single precision input values passed as a __m128 value.
The result is the single precision exponent of the four values, returned as a __m128
value. This is a relaxed version of exp, suitable for use with fastmath compiler
flags or applications not requiring full error handling. Denormal inputs may pro-
duce unpredictable results. Special case inputs produce C99 return values. The
routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NalN converted to QNaN
< —87.5 0
> 88 400
Performance:

91 cycles for most valid inputs (23 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 98

vrs8_expf: Eight-valued single precision exponential function

__m128,__m128 __vrs8_expf (__m128 x1, __m128 x2)

Y =

Prototype:
--m128,__m128 __vrs8_expf(__m128 x1, __m128 x2);

Note that this function uses a non-standard programming interface. The two
_-m128 inputs, which contain eight single precision values, are passed by the
AMDG64 C ABI in registers xmm0, and xmm1. The corresponding results are re-
turned in xmmO0 and xmm1. The use of xmm1 to return a __m128 is non-standard,
and this function can not be called directly from C. It can be called directly from
assembly language. It is intended for internal use by vectorizing compilers, that
may be able to take advantage of the non-standard calling interface.

Inputs:

_-m128 x1 - the first single precision vector of four input values.
_-m128 x2 - the second single precision vector of four input values.

Outputs:
__m128 y1 - the first four single precision exponent results, returned in xmm0.

__m128 y2 - the second four single precision exponent results, returned in
xmml.

Notes:

__vrs8_expf computes the single precision exponential function of eight input ar-
guments.

This routine accepts eight single precision input values passed as two __m128 val-
ues. The result is the single precision exponent of the eight values, returned as
two __m128 values. This is a relaxed version of exp, suitable for use with fastmath
compiler flags or applications not requiring full error handling. Denormal inputs
may produce unpredictable results. Special case inputs produce C99 return values.
The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNalN
< —87.5 0
> 88 +00
Performance:

155 cycles for most valid inputs (19 cycles per value).

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 99

vrsa_expf: Array single precision exponential function

void vrsa_expf (int n, float *x, float *y)

C Prototype:

void vrsa_expf (int n, float *x, float *y)

Inputs:
int n - the number of single precision values in both the input and output arrays.
float *x - pointer to the array of input values.
float *y - pointer to the array of output values.

Outputs:

e raised to the power x (exponential of x) for each x value, filled into the y
array.
Fortran Subroutine Interface:
SUBROUTINE VRSA_EXPF(N,X)Y)
Inputs:
INTEGER N - the number of values in both the input and output arrays.
REAL X(N) - array of single precision input values.
Outputs:
REAL Y(N) - array of exponentials (e raised to the power x) of input values.
Notes:

vrsa_expf computes the single precision exponential function for each element of
an array of input arguments.

This routine accepts an array of single precision input values, computes the e* for
each input value, and stores the result in the array pointed to by the y pointer
input. It is the responsibility of the calling program to allocate/deallocate enough
storage for the output array. This is a relaxed version of exp, suitable for use with
fastmath compiler flags or applications not requiring full error handling. Denormal
inputs may produce unpredictable results. Special case inputs produce C99 return
values. The routine is accurate to better than 1 ulp over the valid input range.

Special case return values:

Input Output
QNaN same QNaN
SNaN same NaN converted to QNalN
< —87.5 0
> 88 400
Performance:

15 cycles per value for valid inputs, n = 24.

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 100

vrs4_powf: 4-value vector single precision power function

__m128 __vrs4_powf(__m128 x,__m128 y)

C Prototype:
~-m128 __vrs4_powf(__m128 x,__m128 y);
Inputs:
_-m128 x - the single precision input base values.
_-m128 y - the single precision input exponent values.
Outputs:
__m128 z - the single precision results of each x raised to the y power, returned
in xmm0.
Notes:
__vrs4_logf() computes the single precision x raised to the y power for four pairs
of input arguments. This routine accepts four single precision input value pairs
passed as __ml128 values. The result is the x raised to the y power for all four
input pairs, returned as a __m128 value.

This is a relaxed version of powf, suitable for use with fastmath compiler flags
or applications not requiring full error handling. Denormal inputs may produce
unpredictable results. Special case inputs produce C99 return values. The routine
is accurate to better than 0.5 ulp over the valid input range.

Special case return values:

Input z Input y Output
+0 y < 0, odd integer +o0
+0 y < 0, not odd integer 400
+0 y > 0, odd integer +0

+0 y > 0, not odd integer +0

—1 +00 1

+1 y (incl. NaN) 1

x (incl. Nan) =+0 1
<0 Yy, not integer QNaN
Ix|<1 —00 +00
Ix|>1 —00 +0
Ix[|<1 400 +0
Ix|>1 +o0 +o0
—00 y < 0, odd integer -0
—00 y < 0, not odd integer +0
—o0 y > 0, odd integer —00
—00 y > 0, not odd integer 400
~+00 y <0, +0
~+00 y >0, ~+00
NaN 7 NONZero, NaN

x<>1 NaN, NaN

Chapter 6: ACML_MV: Fast Math and Fast Vector Math Library 101

Performance:

400 cycles for most valid inputs (100 cycles per value).

Chapter 7: References 102

7 References

[1] C.L. Lawson, R.J. Hanson, D. Kincaid, and F.T. Krogh, Basic linear algebra sub-
programs for Fortran usage, ACM Trans. Maths. Soft., 5 (1979), pp. 308-323.

[2] J.J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson, An extended set of
FORTRAN basic linear algebra subroutines, ACM Trans. Math. Soft., 14 (1988), pp.
1-17.

[3] J.J. Dongarra, J. Du Croz, 1.S. Duff, and S. Hammarling, A set of level 3 basic
linear algebra subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1-17.

[4] David S. Dodson, Roger G. Grimes, John G. Lewis, Sparse Extensions to the FOR-
TRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 17 (1991), pp.
253-263.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s
Guide, STAM, Philidelphia, (1999).

[6] Programming languages - C - ISO/IEC 9899:1999

[7] IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)

Subject Index

Subject Index

accessing ACML (GNU g77/gcc under 32-bit

Windows) .. .ovveeii 6
accessing ACML (GNU g77/gcc under Linux) ... 4
accessing ACML (Linux) 4
accessing ACML (other compilers under Linux).. 6
accessing ACML (PathScale pathf90/pathcc under

LANUX) .ot 5
accessing ACML (PGI pgf77/pgf90/pgcc or

Microsoft C under 64-bit Windows) 8
accessing ACML (PGI pgf77/pgf90/pgcc under

32-bit Windows) 7
accessing ACML (PGI pgf77/pgfo0/pgec under

LiNUX) .ot 5
accessing ACML (Visual Fortran/Microsoft C

under 32-bit Windows).................... 7
accessing ACML under Windows............... 6
ACML C Interfaces, 9
ACML FORTRAN interfaces 9
ACML installation test.................... ... 11
ACML version information 10
ACML_MV (ACML vector math functions).... 58
ACML_MV types......coouuiiiiiiiiiiaann .. 59
B
BLAS . . 12
C
C interfaces in ACML......................... 9
complex FFT 17

D

determining the best ACML version for your

103
F
fast basic math functions............... 60
Fast Fourier Transforms...................... 17
FET .o 17
FFT efficiency................ 18
FFT of multiple complex sequences 26
FFT of multiple Hermitian sequences.......... 56
FEFT of multiple real sequences 52
FFT of single complex sequence............... 19
FFT of single Hermitian sequence............. 54
FFT of single real sequence................... 49
FORTRAN interfaces in ACML................ 9
G
general information L. 2
H
Hermitian data sequences (FFT).............. 49
I
installation test............. 11
introduction.......... 1
L
language interfaces............................ 9
LAPACK .. 13
LAPACK blocking factors.................... 14
LAPACK reference sources 13
libm names................ i 59
library manual............................... 11
library version information 10
linking with ACML 2
linking with Linux ACML 4
linking with Windows ACML 6
R
real data sequences (FFT).................... 49
real FFT 49
S
sparse BLAS 12
\Va
vector math functions........................ 72
Weak aliases ... 59

Routine Index

Routine Index

L VEA2_COS vt ittt e 72
VEA2_@XP .o vov e 94
__vrd2_10g ... 81
__vrd2_1oglO 89
_vrd2_Sin ... 75
_Vrd2_SiNCOS ... e 78
VA4 _COS ettt 73
VA4 _eXD . 95
__vrd4_1og ... 82
__vrd4_loglO 90
_vrd4_Sin ... 76
__vrsd_expf ... 97
__vrsd_logf 85
__vrs4_powf(__m128.............. 100
__vrs8_expf ... 98
__vrs8_logf 86
A
acmlinfo........... 11
ACMLINFO. . .ottt e e s 11
acmlversion ...t 11
ACMLVERSIONttt e e 10
C
[0 S 21
CEETADX . . e 24
CEETAM . . e 28
CEFTAMK . .. e 31
CFFT2D . .ottt e e e 35
CEET2DX . e e 39
CEET3D . e e e e 44
CFFT DX . ottt e e e e 47
COFFT . . e 55
COFFTM . . e 57
D
DZEFT . . e 49

104
F
fastcos. ... 60
fastexp.......... 70
fastexpf..... 71
fastlog. ... 63
fastloglO 65
fastlogf.......l 64
fastpow........ ... 66
fastpowf..... 68
fastsin.......... 61
fastsincos ... 62
I
ILAENVSET ... e 14
S
SCEFT . oot 51
SCEFTM . .t e 53
V
VEAA_COS .\ttt ettt et 74
VEAA_@XP . oot 96
vrda_log. 83
vrda_loglOl 92
Vrda_Sin. 77
VEAA_SINCOS v vt te et 79
vrsa_expf ... 99
vrsa_logf 87
Z
ZDFEFT . e 54
ZDFFTM . . e 56
ZFEFTAD . . e 19
ZEFTADX . oo 22
ZEFTAM . e 26
ZFFTIMX . e 29
ZEFFT2D . e e 33
ZFFT2DX . .t 36
ZEFT3D . oot 42
ZEFT3DX . e 45

	Introduction
	General Information
	Determining the best ACML version for your system
	Accessing the Library (Linux)
	Accessing the Library under Linux using GNU g77/gcc
	Accessing the Library under Linux using PGI compilers pgf77/pgf90/pgcc
	Accessing the Library under Linux using PathScale compilers pathf90/pathcc
	Accessing the Library under Linux using compilers other than GNU, PGI or PathScale

	Accessing the Library (Microsoft Windows)
	Accessing the Library under 32-bit Windows using GNU g77/gcc
	Accessing the Library under 32-bit Windows using PGI compilers pgf77/pgf90/pgcc
	Accessing the Library under 32-bit Windows using Microsoft C or Visual Fortran
	Accessing the Library under 64-bit Windows

	ACML FORTRAN and C interfaces
	Library Version and Build Information
	Library Documentation
	Example programs calling ACML

	BLAS: Basic Linear Algebra Subprograms
	LAPACK: Package of Linear Algebra Subroutines
	Introduction to LAPACK
	Reference sources for LAPACK
	LAPACK block sizes and the ILAENV and ILAENVSET routines

	Fast Fourier Transforms (FFTs)
	Introduction to FFTs
	Data Types and Storage
	Efficiency

	FFTs on Complex Sequences
	FFT of a single sequence
	ZFFT1D Routine Documentation
	CFFT1D Routine Documentation
	ZFFT1DX Routine Documentation
	CFFT1DX Routine Documentation

	FFT of multiple complex sequences
	ZFFT1M Routine Documentation
	CFFT1M Routine Documentation
	ZFFT1MX Routine Documentation
	CFFT1MX Routine Documentation

	2D FFT of two-dimensional arrays of data
	ZFFT2D Routine Documentation
	CFFT2D Routine Documentation
	ZFFT2DX Routine Documentation
	CFFT2DX Routine Documentation

	3D FFT of three-dimensional arrays of data
	ZFFT3D Routine Documentation
	CFFT3D Routine Documentation
	ZFFT3DX Routine Documentation
	CFFT3DX Routine Documentation

	FFTs on real and Hermitian data sequences
	FFT of single sequences of real data
	DZFFT Routine Documentation
	SCFFT Routine Documentation

	FFT of multiple sequences of real data
	DZFFTM Routine Documentation
	SCFFTM Routine Documentation

	FFT of single Hermitian sequences
	ZDFFT Routine Documentation
	CSFFT Routine Documentation

	FFT of multiple Hermitian sequences
	ZDFFTM Routine Documentation
	CSFFTM Routine Documentation

	ACML_MV: Fast Math and Fast Vector Math Library
	Introduction to ACML_MV
	Terminology
	Weak Aliases
	Defined Types

	Fast Basic Math Functions
	fastcos: fast double precision Cosine
	fastsin: fast double precision Sine
	fastsincos: fast double precision Sine and Cosine
	fastlog: fast double precision natural logarithm function
	fastlogf: fast single precision natural logarithm function
	fastlog10: fast double precision base-10 logarithm function
	fastpow: fast double precision power function
	fastpowf: fast single precision power function
	fastexp: fast double precision exponential function
	fastexpf: fast single precision exponential function

	Fast Vector Math Functions
	vrd2_cos: Two-valued double precision Cosine
	vrd4_cos: Four-valued double precision Cosine
	vrda_cos: Array double precision Cosine
	vrd2_sin: Two-valued double precision Sine
	vrd4_sin: Four-valued double precision Sine
	vrda_sin: Array double precision Sine
	vrd2_sincos: Two-valued double precision Sine and Cosine
	vrda_sincos: Array double precision Sine and Cosine
	vrd2_log: Two-valued double precision natural logarithm
	vrd4_log: Four-valued double precision natural logarithm
	vrda_log: Array double precision natural logarithm
	vrs4_logf: Two-valued single precision natural logarithm
	vrs8_logf: Eight-valued single precision natural logarithm
	vrsa_logf: Array single precision natural logarithm
	vrd2_log10: Two-valued double precision base-10 logarithm
	vrd4_log10: Four-valued double precision base-10 logarithm
	vrda_log10: Array double precision base-10 logarithm
	vrd2_exp: Two-valued double precision exponential function
	vrd4_exp: Four-valued double precision exponential function
	vrda_exp: Array double precision exponential function
	vrs4_expf: Four-valued single precision exponential function
	vrs8_expf: Eight-valued single precision exponential function
	vrsa_expf: Array single precision exponential function
	vrs4_powf: 4-value vector single precision power function

	References
	Subject Index
	Routine Index

